• 제목/요약/키워드: vehicle classification method

검색결과 174건 처리시간 0.019초

합성곱 신경망 기반 야간 차량 검출 방법 (Night-time Vehicle Detection Method Using Convolutional Neural Network)

  • 박웅규;최연규;김현구;최규상;정호열
    • 대한임베디드공학회논문지
    • /
    • 제12권2호
    • /
    • pp.113-120
    • /
    • 2017
  • In this paper, we present a night-time vehicle detection method using CNN (Convolutional Neural Network) classification. The camera based night-time vehicle detection plays an important role on various advanced driver assistance systems (ADAS) such as automatic head-lamp control system. The method consists mainly of thresholding, labeling and classification steps. The classification step is implemented by existing CIFAR-10 model CNN. Through the simulations tested on real road video, we show that CNN classification is a good alternative for night-time vehicle detection.

소음지도 제작 시 차량 분류방법이 소음도 예측 결과에 미치는 영향 연구 (Effects of Vehicle Classification Methods on Noise Prediction Results of Road Traffic Noise Map)

  • 김지윤;박인선;정우홍;박상규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.872-876
    • /
    • 2007
  • Road traffic noise map is effective method to save cost and time for environmental noise assessment. Generally, noise is calculated by using theoretical equation of noise prediction, and the calculated result can be influenced by various input factors. Especially, domestic vehicle classification method for traffic flow and heavy vehicle percentage is different from that of foreign countries. Thus, this can cause effect on the noise prediction results. In this study, noise prediction results by using domestic vehicle classification method are compared with those by foreign methods.

  • PDF

소음지도 제작시 차량 분류방법이 소음도 예측 결과에 미치는 영향 연구 (Effects of Vehicle Classification Methods on Noise Prediction Results of Road Traffic Noise Map)

  • 김지윤;박인선;정우홍;강대준;박상규
    • 한국소음진동공학회논문집
    • /
    • 제22권2호
    • /
    • pp.193-197
    • /
    • 2012
  • Road traffic noise map is effective method to save cost and time for environmental noise assessment. Generally, noise is calculated by using theoretical equation of noise prediction, and the calculated result can be influenced by various input factors. Especially, domestic vehicle classification method for traffic flow and heavy vehicle percentage is different from that of foreign countries. Thus, this can cause effect on the noise prediction results. In this study, noise prediction results by using domestic vehicle classification method are compared with those by foreign methods.

차량높이 계측을 통한 차종분류 향상 방안 연구 (Improvement of Vehicle Classification Method using Vehicle Height Measurement)

  • 오주삼;장경찬;김민성
    • 한국도로학회논문집
    • /
    • 제12권4호
    • /
    • pp.47-51
    • /
    • 2010
  • 도로를 주행하는 차량들을 구분하는 차종자료는 도로 및 포장의 설계와 관리 등 여러 분야에서 기초자료로 활용되고 있다. 본 연구에서는 차종구분에 차량높이라는 분류기준을 적용하기 위해 주행하는 차량의 높이를 계측할 수 있는 방법을 고안하고 현장에 장비를 설치한 후 실험을 통해서 차량길이와 차량최고높이 자료를 획득하였다. 차량높이 측정과 동시에 동영상을 촬영하여 국토해양부 12종 차종분류에 의거하여 차종분류 기준값을 작성하였다. 영상을 통해 작성된 차종자료 기준값과 측정된 차량길이와 차량높이를 토대로 판별함수를 이용한 차종분류값을 서로 비교한 결과 88.6%의 차종정확도를 확인하였다. 이를 통해 차량높이라는 분류기준을 적용하여 차종분류에 활용할 수 있는 방안을 제시하였다.

Classification of Objects using CNN-Based Vision and Lidar Fusion in Autonomous Vehicle Environment

  • G.komali ;A.Sri Nagesh
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.67-72
    • /
    • 2023
  • In the past decade, Autonomous Vehicle Systems (AVS) have advanced at an exponential rate, particularly due to improvements in artificial intelligence, which have had a significant impact on social as well as road safety and the future of transportation systems. The fusion of light detection and ranging (LiDAR) and camera data in real-time is known to be a crucial process in many applications, such as in autonomous driving, industrial automation and robotics. Especially in the case of autonomous vehicles, the efficient fusion of data from these two types of sensors is important to enabling the depth of objects as well as the classification of objects at short and long distances. This paper presents classification of objects using CNN based vision and Light Detection and Ranging (LIDAR) fusion in autonomous vehicles in the environment. This method is based on convolutional neural network (CNN) and image up sampling theory. By creating a point cloud of LIDAR data up sampling and converting into pixel-level depth information, depth information is connected with Red Green Blue data and fed into a deep CNN. The proposed method can obtain informative feature representation for object classification in autonomous vehicle environment using the integrated vision and LIDAR data. This method is adopted to guarantee both object classification accuracy and minimal loss. Experimental results show the effectiveness and efficiency of presented approach for objects classification.

차량 형상자료를 이용한 2축 차량의 차종분류 방안 (Vehicle Classification Scheme of Two-Axle Unit Vehicle Based on the Laser Measurement of Height Profiles)

  • 오주삼;장경찬;김민성
    • 한국ITS학회 논문지
    • /
    • 제10권5호
    • /
    • pp.47-52
    • /
    • 2011
  • 본 연구는 차량 제원이 유사한 2축 차량의 차종분류에 있어서 정확도를 높이고자 차량 외형의 높이 프로파일을 이용한 차종분류 방안을 제시했다. 차종별 교통량 자료 생성은 도로를 주행하는 차량을 대상으로 AVC장비에서 계측되는 차량 제원들인 축수, 축간거리, 차량길이, 오버행 등을 활용하여 12종 분류 체계에 의해서 분류되고 있다. 그러나 차량 축이 2개인 2축 차량(1~4종 차량)의 경우 승용차(1종)의 다양화, 대형화로 인하여 화물수송용 차량(3종, 4종)의 제원과 유사해짐에 따라 기존 차량분류인자(축수, 축간거리, 차량길이 등)에 의한 차종분류 시 분류 오류가 발생할 수 있다. 이에 본 연구는 이러한 분류상의 한계를 극복하고자 차량 외관의 높이 프로파일 값을 통하여 주행차량의 형태를 파악하고 이를 이용한 차종분류 방법을 제시하였다. 그리고 현장실험을 통하여 제안된 방법의 정확도를 검증하였다.

신경망을 이용한 루프검지기 차종분류 알고리즘 (ILD Vehicle Classification Algorithm using Neural Networks)

  • 기용걸;백두권
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권5호
    • /
    • pp.489-498
    • /
    • 2006
  • 본 논문은 루프검지기를 이용한 차종분류 방법의 성능 향상을 위해 신경망 패턴인식 기술을 이용한 차종분류 알고리즘을 제안하였다. 기존의 루프검지기 차종분류 방법은 차량의 길이 정보만을 이용해서 차종을 분류하는 것이다. 그러나 루프검지기의 특성상 차종에 따른 길이 정보가 정확하지 않으므로 길이가 비슷한 차종에 대해서는 차종분류 오류가 자주 발생하고 있는 실정이다. 이와 같은 문제점을 개선하기 위해 본 연구에서는 루프검지기 시스템에 신경망 패턴 인식 기술을 적용하였다. 제안된 알고리즘은 차량이 검지영역을 통과할 때 발생하는 루프검지기 공진주파수 값 변화율과 점유시간 정보를 신경망의 입력자료로 활용하여 차량을 5가지 종류로 분류하는 방식이다. 개발된 알고리즘의 성능을 평가하기 위하여, 현장실험을 통해 자료를 수집하고 신경망 학습 및 실험을 실시한 결과 차종분류 정확도가 91.3%였으며, 이는 기존의 연구결과와 비교할 때 매우 높은 것이다.

자석검지기를 이용한 차종인식 알고리즘개발 (Development of Vehicle Classification Algorithm Using Magnetometer Detector)

  • 김수희;오영태;조형기;이철기
    • 대한교통학회지
    • /
    • 제17권4호
    • /
    • pp.111-124
    • /
    • 1999
  • 본 논문의 목적은 최근에 개발 중에 있는 단일 자석검지기를 이용한 차종인식 알고리즘을 개발하고, 현장실험을 통한 현장 적용성을 검토하는 것이다. 고속도로에 설치되어 이는 자석검지기를 이용하여 자료를 수집하며 분석에 이용되는 자료는 개별차량에 대하여 자속밀도의 변화에 따른 전압 값을 Digital Data값으로 변환한 수치를 사용하였다. 그 수치를 토대로 각 차량의 점유시간을 파악하여 각 차량의 점유시간동안 파형의 특징을 추출하여 각 특징들을 기초로 하여 각 차량이 나타내는 고유의 파형을 식별하는 Template Matching 방법과 신경망기법, 그리고 이들을 상호 보완한 복합기법을 사용하였다. 검지차량에 따른 다양한 점유시간을 일정크기로 수평성분 정규화하고 이에 따른 자속속밀도의 변화에 의한 전압 값을 차종별로 샘플을 취하여 이동평균방법으로 처리를 한 후 위의 세 가지 기법을 사용하여 검지차량의 파형과 기준 파형을 비교하여 차종을 인식하는 방법으로 알고리즘을 개발하였다. 차종의 분류는 3가지 단계로 하였는데 2종분류, 3종분류, 5종분류로 접근하였다. 그리고 각각의 분류에 따라 정규화 크기 및 이동평균간격을 달리하여 적용하여 보았고 2종분류에서 인식율이 82%수준이다.

  • PDF

차량 분류에 따른 ASJ 2008 예측 모델 적용에 관한 연구 (A Study on Application using ASJ 2008 Prediction Model according to Vehicle Classification)

  • 박재식;윤효석;한재민;박상규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.153-158
    • /
    • 2012
  • Noise maps are produced according to 'The Method of making a Noise Map' in order to noise control efficiently, and prediction model to predict road traffic noise which may apply to Korean situation, include CRTN, RLS 90, NMPB, Nord 2000 and ASJ 2003. Of them, ASJ 2003, Japan's prediction model has not been verified for the application to Korean situation according to the classification of vehicle. In addition, ASJ 2003 was revised to ASJ 2008 recently, a classification for motorcycle was added. This study attempts to check the classification of vehicle in ASJ 2008 and 'The Method of making a Noise Map' to confirm the suitability of the application of them to Korean situation.

  • PDF

2D 라이다 데이터베이스 기반 장애물 분류 기법 (Obstacle Classification Method Based on Single 2D LIDAR Database)

  • 이무현;허수정;박용완
    • 대한임베디드공학회논문지
    • /
    • 제10권3호
    • /
    • pp.179-188
    • /
    • 2015
  • We propose obstacle classification method based on 2D LIDAR(Light Detecting and Ranging) database. The existing obstacle classification method based on 2D LIDAR, has an advantage in terms of accuracy and shorter calculation time. However, it was difficult to classifier the type of obstacle and therefore accurate path planning was not possible. In order to overcome this problem, a method of classifying obstacle type based on width data of obstacle was proposed. However, width data was not sufficient to improve accuracy. In this paper, database was established by width, intensity, variance of range, variance of intensity data. The first classification was processed by the width data, and the second classification was processed by the intensity data, and the third classification was processed by the variance of range, intensity data. The classification was processed by comparing to database, and the result of obstacle classification was determined by finding the one with highest similarity values. An experiment using an actual autonomous vehicle under real environment shows that calculation time declined in comparison to 3D LIDAR and it was possible to classify obstacle using single 2D LIDAR.