Vehicle fleet planning problem is generic name given to a whole class of practical decision making problems which find the vehicle routes and schedules to accomplish the reqired service to customers using vehicles. In this paper the various problems are classified into the three groups according to their characteristics: (1) vehicle routing problems, (2) vehicle scheduling problems, and (3) vehicle routing and scheduling problems. The State of the art of each group is described and the future research directions are presented.
본 논문에서는 단일 클래스만을 학습하여 차량에 대한 새로운 공격을 탐지한다. 분류 성능 평가를 위해 Car-Hacking 데이터셋을 사용한다. Car-Hacking 데이터셋은 실제 차량의 OBD-II 포트를 통해 CAN (Controller Area Network) 트래픽을 로깅하여 생성된다. 이 데이터셋에는 네 가지 공격 유형이 포함된다. 실험에 사용한 단일 클래스 분류기법은 정상 클래스만을 학습하여 비정상인 공격 클래스를 분류해내는 비지도 학습이다. 비지도 학습 방법을 사용하는 경우에 훈련 과정에서 네거티브 인스턴스를 사용하지 않기 때문에 고효율의 분류 성능을 내는 것은 어렵다. 하지만, 비지도 학습은 라벨이 없는 새로운 공격 데이터를 분류하는데 적합한 장점이 있다. 본 연구에서는 네트워크 침입탐지 시스템에서 서명기반의 규칙으로 탐지하기 어려운 새로운 공격 유형을 탐지하기 위해 단일 클래스 분류기를 사용한다. 제안 방법은 새로운 공격을 모두 탐지하고 정상데이터에 대해서도 효율적인 분류 성능을 보이는 파라미터 조합을 제시한다.
A 300 meter class ROV(CROV300) is composed of three parts : a surface unit, a tether cable and an underwater vehicle. The vehicle controller is based on two processors : an Intel 8097-16-bit one chip micro-processor and a Texas Instruments TMS320E25 digital signal processor. In this paper, the surface controller, the vehicle controller and peripheral devices interfaced with the processors are described. These controllers transmit/receive measured status data and control commands through RS422 serial communication. Depth, heading, trimming, camera tilting, and leakage signals are acquired through the embedded AD converters of the 8097. On the other hand, altitude of ROV and lbstacle avoidance signals are processed by the DSP processor and periodically fetched by the 8097. The processor is interfaced with a 4-channel 12-bit D/A converter to generate control signals for DC motors an dseveral transistors to handle the relays for on/off switching of external devices.
우리는 많은 소형 무인비행체들이 운행될 곧 다가올 미래에 대비하여 무인비행체들 간의 충돌 예방을 할 수 있는 방안에 대하여 연구를 진행하고 있다. 본 논문에서는 높은 밀집도를 가지는 소형 무인 비행체들 간의 충돌을 회피하기 위하여 무인비행체의 성능에 따라 클래스를 부여하고 비행 고도를 지정해주고 지정된 고도 내에서는 수평 비행을 하고 클래스간 이동을 위해서는 몇개의 정해진 지점에서만 수직 비행이 가능하도록 하는 제어 방안을 논하였다.
혼잡한 현대의 교통 상황에서 교통질서를 유지하기 위해 차량에 대한 정보를 아는 것은 매우 중요한 일이다. 본 논문은 차량의 정보를 아는데 있어서 가장 중요한 차량 번호판을 인식하는 새로운 기법을 소개한다. 제안하는 기법은 물체를 분류하는데 있어서 다른 방법보다 우수하다고 알려진 SVM을 이용한다. 번호판 영역을 찾는데는 이중분류 SVM을 이용하고 번호판 문자 인식에서는 다중 분류 SVM을 이용한다. 여러 단계의 영상처리 과정과 인식 과정을 거쳐서 실시간에 처리할 수 있는 시스템으로 여러 종류의 차량 번호판에 대한 인식도 가능하게 한다. 제안한 기법을 이용한 실제적 환경에서의 영상과 인식에 대한 실험결과를 통하여 성능을 입증하였다.
In recent semiconductor and FPD (Flat Panel Display) manufacturing processes, high clean-class delivery operation is required more and more for short working time and better product quality. Traditionally SLIM (Single-sided Linear Induction Motor) is widely used in the liner drive applications because of its simplicity in the rail structure. A magnetically levitated (Maglev) unmanned vehicle with SLIM traction, which is powered by a CPS (Contactless Power Supply) can be a high precision delivery solution for this industry. In this paper unmanned FPD-carrying vehicle, which can levitate without contacting the rail structure, is suggested for high clean-class FPD delivery applications. It can be more acceptable for the complex facilities composed with many processes which require longer rails, because of simple rail structure. The test setup consists of a test vehicle and a rounded rail, in which the vehicle can load and unload products at arbitrary position commanded through wireless communications of host computer. The experimental results show that the suggested vehicle and rail have reasonable traction servo and robust electromagnetic suspensions without any contact. The resolution of point servo errors in the SLIM traction system is accomplished under 1mm. The maximum gap error is ${\pm}0.25mm$ with nominal air gap length of 4.0mm in the electromagnetic suspensions. This type of automated delivery vehicle is expected to have significant role in the clean delivery like FPD glass delivery.
본 연구는 차량 제원이 유사한 2축 차량의 차종분류에 있어서 정확도를 높이고자 차량 외형의 높이 프로파일을 이용한 차종분류 방안을 제시했다. 차종별 교통량 자료 생성은 도로를 주행하는 차량을 대상으로 AVC장비에서 계측되는 차량 제원들인 축수, 축간거리, 차량길이, 오버행 등을 활용하여 12종 분류 체계에 의해서 분류되고 있다. 그러나 차량 축이 2개인 2축 차량(1~4종 차량)의 경우 승용차(1종)의 다양화, 대형화로 인하여 화물수송용 차량(3종, 4종)의 제원과 유사해짐에 따라 기존 차량분류인자(축수, 축간거리, 차량길이 등)에 의한 차종분류 시 분류 오류가 발생할 수 있다. 이에 본 연구는 이러한 분류상의 한계를 극복하고자 차량 외관의 높이 프로파일 값을 통하여 주행차량의 형태를 파악하고 이를 이용한 차종분류 방법을 제시하였다. 그리고 현장실험을 통하여 제안된 방법의 정확도를 검증하였다.
본 연구에서는 루프 센서를 통한 교통량 수집방식의 오류를 해결하기 위해 1종(승용차)과 3종(일반 트럭)의 구분이 어려운 부분 및 영상 이미지의 단점을 보완하기 위해 도로변에 열화상 카메라를 설치하여 영상 이미지를 수집하였다. 수집된 영상 이미지를 레이블링 단계를 거쳐 1종(승용차)과 3종(일반 트럭)의 학습데이터를 구성하였다. 정지영상을 대상으로 labeling을 진행하였으며, 총 17,536대의 차량 이미지(640x480 pixel)에 대해 시행하였다. 열화상 영상 기반의 차종 분류를 달성하기 위해 CNN(Convolutional Neural Network)을 이용하였으며, 제한적인 데이터량과 품질에도 불구하고 97.7%의 분류정확도를 나타내었다. 이는 AI 영상인식 기반의 도로 교통량 데이터 수집 가능성을 보여주는 것이라 판단되며, 향후 더욱더 많은 학습데이터를 축적한다면 12종 차종 분류가 가능할 것이다. 또한, AI 기반 영상인식으로 도로 교통량의 12종 차종뿐만 아니라 다양한(친환경 차량, 도로 법규 위반차량, 이륜자동차 등) 차종 분류를 할 수 있을 것이며, 이는 국가정책, 연구, 산업 등의 통계 데이터로 활용도가 높을 것으로 판단된다.
This paper presents a numerical approach to optimizing vehicle fuel economy in a higway bus. The method described is based on using a commercial software vehicle simulation to identify the relative efficiency of each of the vehicle systems, such as the engine hardware, engine software calibration, transmission, cooling system and ancillary drives. The simulation-based approach offers a detailed understanding of which vehicle systems are underperforming and by how much the vehicle fuel economy can be improved if those systems are brought up to best-in-class performance. In this way, the optimum vehicle fuel economy can be provided to the vehicle customer. A further benefit is that the simulation requires only a minimum number of vehicle testing for initial validation, with all subsequent field test cycles performed in software, thereby reducing development time and cost for the manufacturer.
A study to get better vehicle fuel economy is described based on an express bus. The approach is based on using a commercial software vehicle simulation to identify the relative efficiency of each of the vehicle systems, such as the engine hardware, engine software calibration, transmission, cooling system and ancillary drives. The simulation-based approach offers a detailed understanding of which vehicle systems are underperforming and by how much the vehicle fuel economy can be improved if those systems are brought up to best-in-class performance. In this way, the optimum vehicle fuel economy can be provided to the vehicle customer. A further benefit is that the simulation requires only a minimum of vehicle testing for initial validation, with all subsequent field test cycles performed in software, thereby reducing development time and cost for the manufacturer.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.