• Title/Summary/Keyword: vehicle attack

Search Result 158, Processing Time 0.023 seconds

Development of Security Functional Requirements for Secure-Introduction of Unmanned Aerial Vehicle (무인항공기의 안전한 도입을 위한 보안기능요구사항 개발)

  • Kang, Dongwoo;Won, Dongho;Lee, Youngsook
    • Convergence Security Journal
    • /
    • v.19 no.4
    • /
    • pp.97-105
    • /
    • 2019
  • With the possibility of wireless control of the aircraft by Nicola Tesla, Unmanned Aerial Vehicle(UAV) was mainly used for military and defense purposes with the rapid development through World War I and II. As civilian applications of unmanned aerial vehicles have expanded, they have been used with various services, and attempts have been made to control various environmental changes and risk factors of unmanned aerial vehicles. However, GPS spoofing, Jamming attack and security accidents are occurring due to the communication in the unmaned aerial vehicle system or the security vulnerability of the unmanned aerial vehicle itself. In order to secure introduction of Unmanned aerial vehicle, South Korea has established Unmanned Aerial Vehicle verification system called Airworthiness Certification. However, the existing cerfication system is more focused on test flight, design and structure's safety and reliability. In this paper, we propose a unmanned aerial vehicle system model and propose security functional requirements on unmanned aerial vehicle system in the corresponding system model for secure-introduction of Unmanned Aerial Vehicle. We suggest the development direction of verification technology. From this proposal, future development directions of evaluation and verification technology of Unmanned Aerial Vehicle will be presented.

Sequence Based Anomaly Detection System for Unmanned Aerial Vehicle (시퀀스 유사도 기반 무인 비행체 이상 탐지 시스템)

  • Seo, Kang Uk;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.1
    • /
    • pp.39-48
    • /
    • 2022
  • In this paper, we propose an anomaly detection system (ADS) to detect anomalies of the in-vehicle network for unmanned aerial vehicle (UAV). The proposed ADS detects the anomalies by measuring the similarity of status messages sequences periodically sent by the UAV to the ground control system. We defined three types of malicious message injection attacks that can be performed on the in-vehicle network of UAV and simulated those attack techniques in the Pixhawk4 quadcopter. The proposed ADS can detect abnormal sequences with accuracy of higher than 96%.

Research on Countermeasures of Controller Area Network Vulnerability (Controller Area Network 취약점 분석 및 대응 방안 연구)

  • Hong, Sunghyuck
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.115-120
    • /
    • 2018
  • As the number ofconnected cars grows, the security of the connected cars is becoming more important. There are also increasing warnings about the threat of attacks via the CAN bus used for in-vehicle networks. An attack can attack through a vulnerability in the CAN bus because the attacker can access the CAN bus remotely, or directly to the vehicle, without a security certificate on the vehicle, and send a malicious error message to the devices connected to the CAN bus. A large number of error messages put the devices into a 'Bus-Off' state, causing the device to stop functioning. There is a way to detect the error frame, or to manage the power of the devices related to the bus, but eventually the new standard for the CAN bus will be the fundamental solution to the problem. If new standards are adopted in the future, they will need to be studied.

Analysis of Crash Potential by Vehicle Interactions Using Driving Simulations (주행 시뮬레이션을 이용한 차량간 상호작용에 따른 사고발생가능성 분석)

  • Kim, Yunjong;Oh, Cheol;Park, Subin;Choi, Saerona
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.98-112
    • /
    • 2018
  • Intentional aggressive driving (IAD) is a very dangerous driving behavior that threatens to attack the adjacent vehicles. Most existing studies have focused on the independent driving characteristics of attack drivers. However, the identification of interactions between the offender and the victim is necessary for the traffic safety analysis. This study established multi-agent driving simulation environments to systematically analyze vehicle interactions in terms of traffic safety. Time-to-collision (TTC) was adopted to quantify vehicle interactions in terms of traffic safety. In addition, a exponential decay function was further applied to compare the overall pattern of change in crash potentials when IAD events occurred. The outcome of this study would be useful in developing policy-making activities to enhance traffic safety by reducing dangerous driving events including intentional aggressive driving.

Detection of Car Hacking Using One Class Classifier (단일 클래스 분류기를 사용한 차량 해킹 탐지)

  • Seo, Jae-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.33-38
    • /
    • 2018
  • In this study, we try to detect new attacks for vehicle by learning only one class. We use Car-Hacking dataset, an intrusion detection dataset, which is used to evaluate classification performance. The dataset are created by logging CAN (Controller Area Network) traffic through OBD-II port from a real vehicle. The dataset have four attack types. One class classification is one of unsupervised learning methods that classifies attack class by learning only normal class. When using unsupervised learning, it difficult to achieve high efficiency because it does not use negative instances for learning. However, unsupervised learning has the advantage for classifying unlabeled data, which are new attacks. In this study, we use one class classifier to detect new attacks that are difficult to detect using signature-based rules on network intrusion detection system. The proposed method suggests a combination of parameters that detect all new attacks and show efficient classification performance for normal dataset.

Vibration-Based Signal-Injection Attack Detection on MEMS Sensor (진동 신호를 사용한 MEMS 센서 대상 신호오류 주입공격 탐지 방법)

  • Cho, Hyunsu;Oh, Heeseok;Choi, Wonsuk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.411-422
    • /
    • 2021
  • The autonomous driving system mounted on the unmanned vehicle recognizes the external environment through several sensors and derives the optimum control value through it. Recently, studies on physical level attacks that maliciously manipulate sensor data by performing signal-injection attacks have been published. signal-injection attacks are performed at the physical level and are difficult to detect at the software level because the sensor measures erroneous data by applying physical manipulations to the surrounding environment. In order to detect a signal-injection attack, it is necessary to verify the dependability of the data measured by the sensor. As so far, various methods have been proposed to attempt physical level attacks against sensors mounted on autonomous driving systems. However, it is still insufficient that methods for defending and detecting the physical level attacks. In this paper, we demonstrate signal-injection attacks targeting MEMS sensors that are widely used in unmanned vehicles, and propose a method to detect the attack. We present a signal-injection detection model to analyze the accuracy of the proposed method, and verify its effectiveness in a laboratory environment.

Data Preprocessing Method for Lightweight Automotive Intrusion Detection System (차량용 경량화 침입 탐지 시스템을 위한 데이터 전처리 기법)

  • Sangmin Park;Hyungchul Im;Seongsoo Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.531-536
    • /
    • 2023
  • This paper proposes a sliding window method with frame feature insertion for immediate attack detection on in-vehicle networks. This method guarantees real-time attack detection by labeling based on the attack status of the current frame. Experiments show that the proposed method improves detection performance by giving more weight to the current frame in CNN computation. The proposed model was designed based on a lightweight LeNet-5 architecture and it achieves 100% detection for DoS attacks. Additionally, by comparing the complexity with conventional models, the proposed model has been proven to be more suitable for resource-constrained devices like ECUs.

Aeroelastic Analysis of a Wing with Freeplay Considering Effects of Angle-of-Attack (받음각 효과를 고려한 유격이 있는 날개의 공탄성 해석)

  • Kim Jong-Yun;Yoo Jae-Han;Park Young-Keun;Lee In
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.295-300
    • /
    • 2005
  • The freeplay, one of the concentrated structural nonlinearities, is inevitable for control surfaces of a real air vehicle due to normal wear of components and manufacturing mismatches. Also aerodynamic nonlinearities caused by a shock wave occur in transonic region. In practice, these nonlinearities induce the limit cycle oscillation (LCO) and decrease the transonic flutter speed. In this study, the fictitious mass method is used to apply a modal approach to nonlinear structural models due to freeplay. The transonic small-disturbance (TSD) equation is used to calculate unsteady aerodynamic forces in transonic region. Nonlinear aeroelastic time responses are predicted by the coupled time integration method (CTIM). This method was also applied to a 3D all-movable control wing to investigate its nonlinear aeroelastic responses. The angle of attack effect on the LCO characteristics has been found to be closely related with the initial pitching moment.

  • PDF

Effect of Crosswind on Derailment of Railway Vehicles Running on Curved Track at Low Speed

  • Hosoi, Takahiro;Tanifuji, Katsuya
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.93-101
    • /
    • 2012
  • Owing to the lightening of railway vehicles and increased operation speeds, the reduction of running safety in the presence of crosswind is becoming an important problem. In particular, the running safety tends to decrease when vehicles run on curved track. When a crosswind acts on a vehicle negotiating a curve from the outer side, flange climbing can occur. In this study, a full-vehicle model was constructed using the multi-body simulation software SIMPACK, and a simulation of a bogie vehicle with two-axle trucks negotiating a curve was carried out to examine the running safety under the condition where a crosswind acts on the vehicle from the outer side of the curve. As a result, it was verified that the derailment coefficient of the first wheelset becomes large in the exit transition curve and the coefficient of the third wheelset does in the entrance transition curve, and this trend becomes pronounced at low operation speeds in the presence of a stronger crosswind. It was also shown that the critical derailment coefficients obtained by modified Nadal's formula considering the effect of attack angle become close to the actual derailment coefficients at the timing that flange climbing occurs.

Pseudonym Management in Autonomous Driving Environment (자율주행환경에서 가명성 관리)

  • Hong, Jin Keun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.10
    • /
    • pp.29-35
    • /
    • 2017
  • In this paper, we describe certificate policy and characteristics in cooperation condition with Cooperative intelligent transport system and autonomous driving vehicle. Among the authentication functions of the vehicle, there is a pseudonym authentication function. This pseudonymity is provided for the purpose of protecting the privacy of information that identifies the vehicle driver, passenger or vehicle. Therefore, the purpose of the pseudonym certificate is to be used for reporting on BSM authentication or misbehavior. However, this pseudonym certificate is used in the OBE of the vehicle and does not have a cryptographic key. In this paper, we consider a method for managing a pseudonym authentication function, which is a key feature of the pseudonym certificate, such as location privacy protection, pseudonym function, disposition of linkage value or CRL, request shuffling processing by registry, butterfly key processing, The authentication policy and its characteristics are examined in detail. In connection with the management of pseudonymes of the vehicle, the attacker must record the BSM transmission and trace the driver or vehicle. In this respect, the results of this study are contributing.