• 제목/요약/키워드: vehicle/track interaction

검색결과 86건 처리시간 0.027초

고무바퀴트랙하중 시험기를 이용한 왕복하중실험 (A Moving Track Test Using Tire-Wheel Tracking Machine)

  • 성익현
    • 한국산학기술학회논문지
    • /
    • 제11권1호
    • /
    • pp.250-256
    • /
    • 2010
  • 본 연구에서는 차량-교량간의 상호작용 효과가 교량의 동적거동에 미치는 영향을 분석하기 위하여 실험적 연구를 수행하였다. 이를 위하여 차량-교량 간 상호작용이 가능하도록 윤하중 실험 장치를 개발하여 단순교량 형식의 교량을 대상으로 이동 질량 실험을 수행하였다. 이동질량 이론을 이용한 해석 결과와 이동질량 실험의 결과를 상호분석하여 각각의 합리성을 검증하였다. 수행된 실험의 결과를 분석하여 개발된 윤하중 시험기는 차량-교량 간 상호작용에 의한 교량의 동적 거동을 재현할 수 있음을 알았다. 아울러 이동질량 실험의 결과를 분석하여 차량-교량 간 상호작용이 교량의 동적거동에 미치는 영향을 분석할 수 있었다.

Random vibration analysis of train-slab track-bridge coupling system under earthquakes

  • Zeng, Zhi-Ping;He, Xian-Feng;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Ling-Kun;Xu, Wen-Tao;Lou, Ping
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.1017-1044
    • /
    • 2015
  • This study aimed to investigate the random vibration characteristic of train-slab track-bridge interaction system subjected to both track irregularities and earthquakes by use of pseudo-excitation method (PEM). Each vehicle subsystem was modeled by multibody dynamics. A three-dimensional rail-slab- girder-pier finite element model was created to simulate slab track and bridge subsystem. The equations of motion for the entire system were established based on the constraint condition of no jump between wheel and rail. The random load vectors of equations of motion were formulated by transforming track irregularities and seismic accelerations into a series of deterministic pseudo-excitations according to their respective power spectral density (PSD) functions by means of PEM. The time-dependent PSDs of random vibration responses of the system were obtained by step-by-step integration method, and the corresponding extreme values were estimated based on the first-passage failure criterion. As a case study, an ICE3 high-speed train passing a fifteen-span simply supported girder bridge simultaneously excited by track irregularities and earthquakes is presented. The evaluated extreme values and the PSD characteristic of the random vibration responses of bridge and train are analyzed, and the influences of train speed and track irregularities (without earthquakes) on the random vibration characteristic of bridge and train are discussed.

마찰 에너지 해석을 통한 러버 트랙(Rubber Track)의 마모율 예측 (Prediction of Wear Rate for Rubber Track by Using Frictional Energy Analysis)

  • 강종진;조진래;정의봉
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.125-133
    • /
    • 2011
  • The wear of rubber track being in contact with the road surface is an important subject because it decreases the traction performance and the operating efficiency of tracked vehicle. For the above reasons, many attempts have been made to quantitatively calculate the rubber track. However, it depends on the experimental methods which are highly time- and cost-consuming. Therefore, the numerical simulation approach is highly desirable, but it needs to model the complex geometry and the material behavior in details as well as the interaction with the road surface. In this study, the rubber track and its material behavior are elaborately modeled since these factors are very important in the prediction of the wear rate of the rubber track. Accordingly to the studies on the rubber wear by previous investigations, it has been found that the wear is greatly influenced by the frictional energy. The frictional energy of rubber track is computed by utilizing the 3D finite element analysis of the rubber track, and the wear rate is evaluated making use of the frictional energy and a wear model.

차륜 답면의 열손상에 대한 잔류응력 평가 (Evaluation of Residual Stress for Thermal Damage of Railway Wheel Tread)

  • 권석진;서정원;이동형;함영삼
    • 한국정밀공학회지
    • /
    • 제28권5호
    • /
    • pp.537-542
    • /
    • 2011
  • The thermo-mechanical interaction between brake block and wheel tread during braking has been found to cause thermal crack on the wheel tread. Due to thermal expansion of the rim material, the thermal cracks will protrude from the wheel tread and be more exposed to wear during the wheel/block contact than the rest of the tread surface. The wheel rim is in residual compression stress when is new. After service running, the region in the tread has reversed to tension. This condition can lead to the formation and growth of thermal cracks in the rim which can ultimately lead to premature failure of wheel. In the present paper, the thermal cracks of railway wheel, one of severe damages on the wheel tread, were evaluated to understand the safety of railway wheel in running condition. The residual stresses for damaged wheel which are applied to tread brake are investigated. Mainly X-ray diffusion method is used. Under the condition of concurrent loading of continuous rolling contact with rails and cyclic frictional heat from brake blocks, the reduction of residual stress is found to correlate well with the thermal crack initiation.

레일이음매의 동적거동에 대한 연구 (A Study on the dynamic behavior of rail due to dipped joints)

  • 강윤석;양신추
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.328-333
    • /
    • 2002
  • When vehicle travelling along the track which has irregularity such as vertical profile, dynamic forces arise at the Wheel/Rail contact patch by wheel/rail interaction. In particular short wavelength irregularities on dipped joint and small stiffness of connecting rail bring about intense wheel/rail dynamic effects at higher speed. In the paper, a new model for dipped joint rail is developed to study dynamic behavior of track. A cusp behavior on dipped joint was defined by its amplitude and decay factor, which was presented by FRA track classes. The result of case study are presented, which show wheel rail contact force in each track classes, train operation speed and bending flexible rigidity ratio of fishplates which are connecting the rail.

  • PDF

플로팅 슬래브궤도를 적용한 선하역사 구조물 진동해석 (Vibration Analysis of Station under Railway Lines with Floating Slab Track)

  • 장승엽;조호현;양신추
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1719-1724
    • /
    • 2010
  • In the areas susceptible to vibration and noise induced by railway traffic such as downtown area and stations under railway lines, the vibration and the structure-borne noise can be solved by floating slab track system separating the entire track structure from its sub-structure using anti-vibration mat or springs. In other countries, the core technologies for vibration-proof design and vibration isolator - one of key components - have been developed and many installation experiences have been accumulated. However, in Korea, since the design technology of system and components are not yet developed, the foreign systems are being introduced without any adjustment. Thus, in this study, the vibration isolator has been developed and its performance are investigated by the dynamic analysis of a station structure under railways lines and the floating slab track system. For this purpose, the loads transferred from the vibration isolator of the floating slab track were evaluated by train running simulation considering vehicle-track interaction, and then the dynamic analysis of station structure subjected to these loads was performed. The dynamic analysis results show that the proposed floating slab track can reduce the vibration of structure by about 25dB compared with that in conventional ballast track without floating system.

  • PDF

The Evaluation of Axial Stress in Continuous Welded Rails via Three-Dimensional Bridge-Track Interaction

  • Manovachirasan, Anaphat;Suthasupradit, Songsak;Choi, Jun-Hyeok;Kim, Bum-Joon;Kim, Ki-Du
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1617-1630
    • /
    • 2018
  • The crucial differences between conventional rail with split-type connectors and continuous welded rails are axial stress in the longitudinal direction and stability, as well as other issues generated under the influence of loading effects. Longitudinal stresses generated in continuously welded rails on railway bridges are strongly influenced by the nonlinear behavior of the supporting system comprising sleepers and ballasts. Thus, the track structure interaction cannot be neglected. The rail-support system mentioned above has properties of non-uniform material distribution and uncertainty of construction quality. The linear elastic hypothesis therefore cannot correctly evaluate the stress distribution within the rails. The aim of this study is to apply the nonlinear finite element method using the nonlinear coupling interface between the track and structural model and to illustrate the welded rail behavior under the loading effect and uncertain factors of the ballast. Numerical results of nonlinear finite analysis with a three-dimensional solid and frame element model are presented for a typical track-bridge system. A composite plate girder, modeled by solid and shell elements, is also analyzed to consider the behavior of the welded rail. The analysis result showed buckling under the independent calculations of load cases, including 'temperature change', 'bending of the supporting structure', and 'braking' of the railway vehicle. A parametric study of the load combination method and the loading sequence is also included in this analysis.

고속열차 주행중 이상진동에 대한 시험적 평가 (An Experimental Evaluation for an Abnormal Vibration on Running of the High Speed Train)

  • 양희주;우관제;손병구;성재호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2263-2268
    • /
    • 2011
  • THE VIBRATION MODE OF RAILWAY VEHICLE IS DIFFICULT TO FIND OUT THE CHARACTERISTICS OF MOTION DURING THE OPERATION ON THE TRACK BECAUSE THESE HAPPEN TO INDEPENDENCE OR DUPLICATION MOTION CAUSED BY VEHICLE, WHEEL/RAIL INTERACTION, TRACK IRREGULARITY AND FAILURE OF THE SUSPENSION & POWER TRANSMISSION DEVICE ETC. IT IS NAMED AN ABNORMAL VIBRATION THAT THE VIBRATION, WHICH WAS PASSED THE PRIMARY AND SECONDARY SUSPENSION, IS AFFECTED TO THE PASSENGER OR DRIVER WITHOUT DAMPING. THIS PAPER DESCRIBES AN EXPERIENCE EVALUATION TO FIND OUT THE CAUSE OF AN ABNORMAL VIBRATION WHICH WAS HAPPEN AT THE CAB OF POWER CAR IN KTX-SANCHEON TRAINSET WHEN ON RUNNING AT HIGH SPEED ZONE.

  • PDF

강재 분기기의 진동을 고려한 자기부상열차 부상안정성 연구 (Study on the Levitation Stability of Maglev Vehicle considering the Vibration of Steel Switch Track)

  • 한종부;박진우;한형석;이종민;김성수
    • 한국철도학회논문집
    • /
    • 제18권3호
    • /
    • pp.175-185
    • /
    • 2015
  • 일반적으로 열차분야에서 분기기 시스템은 안전성과 직접적으로 연관되기 때문에 높은 신뢰성이 요구된다. 특히 자기부상열차의 분기기 시스템은 대차가 궤도를 감싸는 구조적 특징으로, 고가궤도 전체가 움직여야 한다. 이러한 이유로 자기부상열차의 분기기는 강 재질로 설계되었다. 강 거더의 분기기는 콘크리트 거더에 비하여 진동측면뿐만 아니라 거더의 처짐에도 취약하다. 그러므로 자기부상열차가 유연한 분기기 위를 통과 할 때, 부상안정성 예측이 매우 중요하다. 본 논문의 목표는 자기부상열차와 분기기 거더의 연성된 동역학 해석모델을 개발하고, 공진예측 및 차량의 부상안정성 예측에 있다. 이를 위해서 차량의 3차원 다물체 동역학 모델을 개발 하였고, 분기기 거더와 모달중첩법을 이용한 연성모델링을 수행하였다. 개발된 해석모델은 실측 실험과 비교를 통해서 해석모델의 타당성을 검증하였다.

자기부상열차 시험용 1/2차량 대차제작과 주행성능 실험 (Manufacturing and Dynamic Performance test for Prototype Bogie of half Maglev vehicle)

  • 이남진;한형석;이원상;김철근
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1575-1580
    • /
    • 2009
  • Maglev vehicle has two kinds of suspension system such as a secondary suspension with air-spring and a primary suspension as electromagnetic suspension which composed of electromagnet, magnet driver, controller and sensors. The interaction between each dynamic component of vehicle and track effects the stability and running performance. To achieve the specified performance of vehicle, many various approaches of research were tried, then as the result of these efforts, the first commercial operating with Maglev will start soon. The bogie for revenue service from 2012 has some significant modifications compared to the previous one, and to verify the changes the half prototype vehicle was manufactured and took the running performance test. In this report, we will introduce the stage of manufacturing and report results of dynamic performance tests to verify new concept of bogie mechanism.

  • PDF