• Title/Summary/Keyword: vegetation community type

Search Result 205, Processing Time 0.022 seconds

Analyzing the Influence of Biomass and Vegetation Type to Soil Organic Carbon - Study on Seoseoul Lake Park and Yangjae Citizen's Forest - (바이오매스량과 식생구조가 토양 탄소함유량에 미치는 영향 분석 - 서서울호수공원과 양재 시민의 숲을 대상으로 -)

  • Tanaka, Riwako;Kim, Yoon-Jung;Ryoo, Hee-Kyung;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.123-134
    • /
    • 2014
  • Identification of methods to optimize the growth of a plant community, including the capacity of the soil to further sequester carbon, is important in urban design and planning. In this study, to construct and manage an urban park to mitigate carbon emissions, soil organic carbon of varying biomass, different park construction times, and a range of vegetation types were analyzed by measuring aboveground and belowground carbon in Seoseoul Lake Park and Yangjae Citizen's Forest. The urban parks were constructed during different periods; Seoseoul Lake Park was constructed in 2009, whereas Yangjae Citizen's Forest was constructed in 1986. To identify the differences in soil organic carbon in various plant communities and soil types, above and belowground carbon were measured based on biomass, as well as the physical and chemical features of the soil. Allometric equations were used to measure biomass. Soil total organic carbon (TOC) and chemical properties such as pH, cation exchange capacity (CEC), total nitrogen (TN), and soil microbes were analyzed. The analysis results show that the biomass of the Yangjae Citizen's Forest was higher than that of the Seoseoul Lake Park, indicating that older park has higher biomass. On the other hand, TOC was lower in the Yangjae Citizen's Forest than in the Seoseoul Lake Park; air pollution and acid rain probably changed the acidity of the soil in the Yangjae Citizen's Forest. Furthermore, TOC was higher in mono-layered plantation area compared to that in multi-layered plantation area. Improving the soil texture would, in the long term, result in better vegetation growth. To improve the soil texture of an urban park, park management, including pH control by using lime fertilization, soil compaction control, and leaving litter for soil nutrition is necessary.

Influence of Environmental Characteristics on the Community Structure of Benthic Macroinvertebrates in Stream-type Waterways Constructed at Upper Reaches of Guem River (금강 상류 구간 내 샛강형 수로의 서식환경 특성이 저서성 대형무척추동물 군집 구조에 미치는 영향)

  • Son, Se-Hwan;Choi, Jong-Yun
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.1
    • /
    • pp.24-38
    • /
    • 2021
  • Microhabitat In the upper stream is created by various environment variables such as the bottom substrate and the physicochemical factors, and may influence the distribution of benthic macroinvertebrates. We investigated the bottom substrate and environmental variables influencing the distribution of benthic macroinvertebrate in 26 stream-type waterways established at upper reaches of Geum River. During study period, total 85 families, 160 species, 9305 individuals of benthic macroinvertebrates were recorded. The stream-type waterways, where the bottom substrates consist mainly of pebble (16~64 mm) and cobble (64~256 mm) or with rapid water velocity (more than 0.2 m/s) and high dissolved oxygen (more than 120%), were supported by high species diversity of benthic macroinvertebrate. Hierological cluster analysis and the nonparametric multidimensional scale (NMDS) divided 26 stream-type waterways into a total of three clusters. In Cluster 1, the invertebrate species, such as Branchiura sowerbyi, Cloeon dipterum, Ischnura asiatica, Paracercion calamorum, and Radix auricularia, closely related to aquatic macrophytes, and Chironomidae spp., Limnodrilus gotoi, and Tanypodinae sp. were abundant in waterways, with high coverage of silt and clay as well as high turbidity and total nitrogen. The benthic macroinvertebrate species (Cheumatopsyche brevilineata, Drunella ishiyamana, Dugesia japonica, Ephemera orientalis, Gumaga KUa, Macrostemum radiatum, Potamanthus formosus, Semisulcospira libertine, Stenelmis vulgaris, and Teloganopsis punctisetae) included in Cluster 2 were dominated in sites with high cover rates of pebble and gravel. Cluster 3 was predominantly covered by the Cobbles, was supported by Simulium sp. Such a clear distinction in the study sites means that each stream-type waterways is governed by a clear habitat environment. In the case of some sites with low species diversity, improvement measures are required to restore nature, such as improving the function of inflows and outflows, creating meandering channel, and inducing the settlement of littoral vegetation.

Implications of Impacts of Climate Change on Forest Product Flows and Forest Dependent Communities in the Western Ghats, India

  • Murthy, Indu K.;Bhat, Savithri;Sathyanarayan, Vani;Patgar, Sridhar;M., Beerappa;Bhat, P.R.;Bhat, D.M.;Gopalakrishnan, Ranjith;Jayaraman, Mathangi;Munsi, Madhushree;N.H., Ravindranath;M.A., Khalid;M., Prashant;Iyer, Sudha;Saxena, Raghuvansh
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.189-200
    • /
    • 2014
  • The tropical wet evergreen, tropical semi evergreen and moist deciduous forest types are projected to be impacted by climate change. In the Western Ghats region, a biodiversity hotspot, evergreen forests including semi evergreen account for 30% of the forest area and according to climate change impact model projections, nearly a third of these forest types are likely to undergo vegetation type change. Similarly, tropical moist deciduous forests which account for about 28% of the forest area are likely to experience change in about 20% of the area. Thus climate change could adversely impact forest biodiversity and product flow to the forest dependent households and communities in Uttara Kannada district of the Western Ghats. This study analyses the distribution of non-timber forest product yielding tree species through a network of twelve 1-ha permanent plots established in the district. Further, the extent of dependence of communities on forests is ascertained through questionnaire surveys. On an average 21% and 28% of the tree species in evergreen and deciduous forest types, respectively are, non-timber forest product yielding tree species, indicating potential high levels of supply of products to communities. Community dependence on non-timber forest products is significant, and it contributes to Rs. 1199 and Rs. 3561/household in the evergreen and deciduous zones, respectively. Given that the bulk of the forest grids in Uttara Kannada district are projected to undergo change, bulk of the species which provide multiple forest products are projected to experience die back and even mortality. Incorporation of climate change projections and impacts in forest planning and management is necessary to enable forest ecosystems to enhance resilience.

Studies on the Natural Distribution and Ecology of Ilex cornuta Lindley et Pax. in Korea (호랑가시나무의 천연분포(天然分布)와 군낙생태(群落生態)에 관한 연구(研究))

  • Lee, Jeong Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.62 no.1
    • /
    • pp.24-42
    • /
    • 1983
  • To develop Ilex cornuta which grow naturally in the southwest seaside district as new ornamental tree, the author chose I. cornuta growing in the four natural communities and those cultivated in Kwangju city as a sample, and investigated its ecology, morphology and characteristics. The results obtained was summarized as follows; 1) The natural distribution of I. cornuta marks $35^{\circ}$43'N and $126^{\circ}$44'E in the southwestern part of Korea and $33^{\circ}$20'N and $126^{\circ}$15'E in Jejoo island. This area has the following necessary conditions for Ilex cornuta: the annual average temperature is above $12^{\circ}C$, the coldness index below $-12.7^{\circ}C$, annual average relative humidity 75-80%, and the number of snow-covering days is 20-25 days, situated within 20km of from coastline and within, 100m above sea level and mainly at the foot of the mountain facing the southeast. 2) The vegetation in I. cornuta community can be divided that upper layer is composed of Pinus thunbergii and P. densiflora, middle layer of Eurya japonica var. montana, Ilex cornuta and Vaccinium bracteatum, and the ground vegetation is composed of Carex lanceolata and Arundinella hirta var. ciliare. The community has high species diversity which indicates it is at the stage of development. Although I. cornuta is a species of the southern type of temperate zone where coniferous tree or broad leaved, evergreen trees grow together, it occasionally grows in the subtropical zone. 3) Parent rock is gneiss or rhyolite etc., and soil is acidic (about pH 4.5-5.0) and the content of available phosphorus is low. 4) At maturity, the height growth averaged $10.48{\pm}0.23cm$ a year and the diameter growth 0.43 cm a year, and the annual ring was not clear. Mean leaf-number was 11.34. There are a significant positive correlation between twig-elongation and leaf-number. 5) One-year-old seedling grows up to 10.66 cm (max. 18.2 cm, min. 4.0 cm) in shoot-height, with its leaf number 12.1 (max. 18, min), its basal diameter 2.24 mm (max. 4.0 mm, min. 1.0 mm) and shows rhythmical growth in high temperature period. There were significant positive correlations between stalk-height and leaf-number, between stalk-height and basal-diameter, and between number and basal diameter. 6) The flowering time ranged from the end of April to the beginning of May, and the flower has tetra-merouscorella and corymb of yellowish green. It has a bisexual flower and dioecism with a sexual ratio 1:1. 7) The fruit, after fertilization, grows 0.87 cm long (0.61-1.31 cm) and 0.8 cm wide (0.62-1.05 cm) by the beginning of May. Fruits begin to turn red and continue to ripen until the end of October or the beginning of November and remain unfading until the end of following May. With the partial change in color of dark-brown at the beginning of the June fruits begin to fall, bur some remain even after three years. 8) The seed acquision ratio is 24.7% by weight, and the number of grains per fruit averages 3.9 and the seed weight per liter is 114.2 gram, while the average weight of 1,000 seeds is 24.56 grams. 9) Seeds after complete removal of sarcocarp, were buried under ground in a fixed temperature and humidity and they began to develop root in October, a year later and germinated in the next April. Under sunlight or drought, however, the dormant state may be continued.

  • PDF

Vegetation Change of Abies koreana Habitats in the Subalpine Zone of Mt. Jirisan over Eight Years (지리산 아고산대 구상나무 자생지의 8년간 식생 변화)

  • Da-Eun Park;Jeong-Eun Lee;Go Eun Park;Hee-Moon Yang;Ho-Jin Kim;Chung-Weon Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.2
    • /
    • pp.222-238
    • /
    • 2024
  • Coniferous species in subalpine ecosystems are known to be highly sensitive to climate change. Therefore, it is becoming increasingly important to monitor community and population dynamics. This study monitored 37 plots within the distribution area of Abies koreana on Mt. Jirisan for a period of eight years. We analyzed the importance value, density of living stems, mortality rate, recruitment rate, basal area, DBH (diameter of breast height) class distribution, and tree health status. Our results showed changes in the importance value based on the tree stratum, with A. koreana decreasing by 3.6% and Tripterygium regelii increasing by 2.5% in the tree layer. Between 2015 and 2023, there were 149 dead trees/ha (17.99% mortality rate) and 12 living trees/ha (1.02% recruitment rate) of A. koreana. The decrease in basal area was attributed to a decrease in the number of living trees. Tree mortality occurred in all DBH classes, with a particularly high decline in the <10 cm class (65 trees/ha reduced). In terms of changes in tree health status, the population of alive standing (AS) type trees, initially consisting of 539 trees/ha, has been transformed into alive standing (AS), alive lean (AL), and death standing (DS), accounting for 69.7%, 0.5%, and 13.8%, respectively. Meanwhile, DS-type trees have transitioned into dead broken (DB) and dead fallen (DF) types. This phenomenon is believed to be caused by strong winds in the subalpine region that pull up the rootlets from the soil. Further research on this finding is recommended.