• Title/Summary/Keyword: vegetation area

Search Result 2,127, Processing Time 0.035 seconds

EVALUATION FOR DAMAGED DEGREE OF VEGETATION BY FOREST FIRE USING LIDARAND DIGITALAERIAL PHOTOGRAPH

  • Kwak, Doo-Ahn;Chung, Jin-Won;Lee, Woo-Kyun;Lee, Seung-Ho;Cho, Hyun-Kook;We, Gwang-Jae;Kim, Tae-Min
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.533-536
    • /
    • 2007
  • The LiDAR data structure has the potential for modeling in three dimensions because the LiDAR data can represent voxels with z value under certain defined conditions. Therefore, it is possible to classify the physical damaged degree of vegetation by forest fire as using the LiDAR data because the physical loss of canopy height and width by forest fire can be relative to an amount of points reached to the ground through the canopy of damaged forest. On the other hand, biological damage of vegetation by forest fire can be explained using the NDVI (Normalized Difference Vegetation Index) which show vegetation vitality. In this study, we graded the damaged degree of vegetation by forest fire in Yangyang-Gun of South Korea using the LiDAR data for physical grading and digital aerial photograph including Red, Green, Blue and Near Infra-Red bands for biological grading. The LiDAR data was classified into 2 classes, of which one was Serious Physical Damaged (SPD) and the other was Light Physical Damaged (LPD) area. The NDVI was also classified into 2 classes which are Serious Biological Damaged (SBD) and Light Biological Damaged (LBD) area respectively. With each 2 classes ofthe LiDAR data and NDVI, the damaged area by forest fire was graded into 4 degrees like damaged class 1,2,3 and 4 grade. As a result of this study, 1 graded area was the broadest and next was the 3 grade. With this result, we could know that the burned area by forest fire in Yangyang-Gun was damaged rather biologically because the NDVI in 1 and 3 grade appeared low value whereas the LiDAR data in 1 and 3 grade included light physical damage like the LPD.

  • PDF

Impact of Land Use Land Cover Change on the Forest Area of Okomu National Park, Edo State, Nigeria

  • Nosayaba Osadolor;Iveren Blessing Chenge
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.3
    • /
    • pp.167-179
    • /
    • 2023
  • The extent of change in the Land use/Land cover (LULC) of Okomu National Park (ONP) and fringe communities was evaluated. High resolution Landsat imagery was used to identify the major vegetation cover/land use systems and changes around the national park and fringe communities while field visits/ground truthing, involving the collection of coordinates of the locations was carried out to ascertain the various land cover/land use types identified on the images, and the extent of change over three-time series (2000, 2010 and 2020). The change detection was analyzed using area calculation, change detection by nature and normalized difference vegetation index (NDVI). The result of the classification and analysis of the LULC Change of ONP and fringe communities revealed an alarming rate of encroachment into the protected area. All the classification features analyzed had notable changes from 2000-2020. The forest, which was the dominant LULC feature in 2000, covering about 66.19% of the area reduced drastically to 36.12% in 2020. Agricultural land increased from 6.14% in 2000 to 34.06% in 2020 while vegetation (degraded land) increased from 27.18% in 2000 to 38.89% in 2020. The magnitude of the change in ONP and surroundings showed the forest lost -247.136 km2 (50.01%) to other land cover classes with annual rate change of 10%, implying that 10% of forest land was lost annually in the area for 20 years. The NDVI classification values of 2020 indicate that the increase in medium (399.62 km2 ) and secondary high (210.17 km2 ) vegetation classes which drastically reduced the size of the high (38.07 km2 ) vegetation class. Consequent disappearance of the high forests of Okomu is inevitable if this trend of exploitation is not checked. It is pertinent to explore other forest management strategies involving community participation.

Spatial distribution of vegetation along the environmental gradient on the coastal cliff and plateau of Janggi peninsula (Homigot), southeastern Korea

  • Jung, Song Hie;Kim, A Reum;Lim, Bong Soon;Seol, Jae Won;Lee, Chang Seok
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.117-128
    • /
    • 2019
  • Background: Cliffs are a major plant habitat around the coastal area, but in contrast to sand dunes and salt marshes, they have been little investigated in Korea. There are simple descriptions of cliff vegetation in studies on island vegetation, but there is no published paper, which addressed sea cliff vegetation synthetically. Furthermore, the coastal area where this study was carried out was designated as a conservation reserve. Even though, this area is exposed to intense recreational use such as trekking in these days. This study aims to clarify spatial distribution and structure of vegetation along the environmental gradient on coastal cliff and plateau in the Janggi peninsula (Homigot) located on southeastern Korea. Further, this study has also another objective to prepare a restoration plan to protect this conservation reserve from intense human disturbance. Results: Landscape elements were arranged in the order of sea cliff risen directly on the sea, seashore, coastal cliff, and plateau covered with relatively deep soil in a coastal area of the Janggi peninsula (Homigot), southeastern Korea. Vegetation was sampled at 59 plots arranged from the sea cliff through the seashore and coastal cliff to plateau. The sea cliff, seashore, and coastal cliff, which compose the coastal landscape, were dominated by the seashore spatulate aster (Aster spathulifolius Maxim.) community, dwarf sand sedge (Carex pumila Thunb.) community, and seashore spatulate aster (Aster spathulifolius Maxim.) community. On the plateau corresponding to the ridge of the coastal cliff, black pine (Pinus thunbergii Parl.) community, golden rain tree (Koelreuteria paniculata Laxmann) community, east Asian hackberry (Celtis sinensis Pers.) community, sawleaf zelkova (Zelkova serrata Makino) community, and Korean oak (Quercus dentata Thunb.) community were established in the mentioned order along distance from the sea. Stand ordination showed a vegetation sequence from the seashore through the cliff to the plateau, consistent in its overall pattern among sites. This was dominated by topography. There is evidence for the importance also of salinity, drought and of soil depth. Conclusion: The lack of scientific interest in cliffs to date is in striking contrast to the commonness of cliffs around the whole national territory and to the attraction cliffs have had for humans throughout history. Cliffs provide a unique habitat, rarely investigated from an ecological viewpoint. Cliffs may represent an invaluable type of ecosystem, consisting of some of the least disturbed habitats on earth and contributing more to the biodiversity of a region than their surface coverage would indicate. Although this coastal area where this study was carried out was designated as a conservation reserve, this area is in danger of severe disturbance due to excessive recreational use. We recommended a restoration plan to protect this area from such a disturbance.

A Study on the Forest Vegetation of Odaesan National Park, Korea (오대산국립공원 삼림식생에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Lee, Nam-Sook;Choi, Young-Eun;Song, Myoung-Jun
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • This study, which was conducted from Apr. 2013 to Jan. 2014, was carried out as part of a project of making a more detailed ecological zoning map with 1/5,000 scale. The necessity of electronic vegetation map with large scale has arisen in order to make the best use of basic research findings on resource monitoring of National Parks and to enhance efficiency in National Park management. In order to improve accuracy and speed of vegetation research process, the data base for vegetation research was categorized into five groups, namely broad-leaved forest, coniferous forest, mixed forest, rock vegetation and miscellaneous one. And then a vegetation map for vegetation research was created for the research on the site. What is in the database for vegetation research and the vegetation map reflecting findings from vegetation research showed similar distribution rate for broad-leaved forest with 71.965% and 71.184%, respectively. The distribution rate of coniferous forest (16.010%, 15.747%), mixed forest (10.619%, 12.085%), and rock vegetation (0.015%, 0.002%) did not have much difference. In a detailed vegetation map reflecting vegetation research findings, the broad-leaved mountain forest was the most widely distributed with 60.096% based on the physiognomy classification. It was followed by mountain coniferous forest (16.332%), mountain valley forest (15.887%), and plantation forest (3.558%) As for vegetation conservation classification evaluated in the national park, grade I and grade II areas took up 200.44 km2, 61.80% and 108.80 km2, 33.55% respectively. The combined area of these two amounts to 95.35%, making this area the first grade area in ecological nature status. This means that this area is highly worth preserving its vegetation. The high rate of grade I area such as climax forests, unique vegetation, and subalpine vegetation seems to be attributable to diverse innate characteristics of Odaesan National Park, high altitude, low level of artificial disturbance, the subalpine zone formed on the ridge of the mountain top, and their vegetation formation, which reflects climatic and geological characteristics, despite continuous disturbance by mountain climbing.

Forest Vegetation Structure in Maruguem(the Ridge Line) Area of Dakmokryeong to Daetjae, the Baekdudaegan (백두대간(닭목령-댓재 구간) 마루금 주변의 산림식생구조)

  • Song, Ju-Hyeon;Kwon, Jino;Yun, Chung-Weon
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.1
    • /
    • pp.28-51
    • /
    • 2019
  • The purpose of this study was to analyze forest vegetation structure in Marugeum (the ridge line) area between Dakmokryeong and Daetjae in Baekdudaegan through vegetation classification, importance value, species diversity, and CCA using the data that were collected from 245 quadrates through Braun-Blanquet vegetation survey method from May to September in 2017. The results of the forest vegetation classification identified 8 vegetation units with Quercus mongolica community group at the highest level. Q. mongolica community group was classified into the Cornus controversa community, Buxus koreana community, Sasa borealis community, Abies nephrolepis community, and Q. mongolica typical community. C. controversa community was further classified into Quercus dentata group, Filipendula glaberrima group, Larix kaempferi group, and C. controversa typical group. The result of the important value analysis showed that Q. dentata had the highest importance value at 19.1% in vegetation unit 1 while Q. mongolica had the highest importance value at 22.7%, 38.3%, 25.6%, 41.3%, 27.9%, and 41.6% in vegetation unit 2, 4, 5, 6, 7, and 8, respectively, and L. kaempferi had the highest importance value at 27.6% in vegetation unit 3. As such, Q. mongolica species generally represented the communities of Marugeum (the ridge line) area of Dakmokryeong to Daetjae in Baekdudaegan. The results of species diversity showed that vegetation unit 1 and 2 were 3.305 and 3.236, respectively, which were relatively higher than other vegetation units. It was considered that this result was due to the influence of high emergence of present species. The results of the CCA analysis of the correlations between biotic environmental factors and vegetation types showed that vegetation unit 1 was mainly correlated with the megaphanerophyte ratio and vine plant ratio. In the correlations between abiotic environmental factors and vegetation types, vegetation unit 7 was significantly correlated with altitude. From the perspective of ecological management, vegetation unit 5 represented by B. koreana community was inhabited by a variety of plants due to the species composition and location environment due to the geological characteristics that are typical of limestone area. Vegetation unit 7 represented by A. nephrolepis community was typified as subalpine vegetation widely distributed by relict species and endemic species. We concluded that it is necessary to manage these vegetation units with an ecologically differentiated approach.

The Effect of Urban Road Vegetation on a Decrease of Road Surface Temperature (도시도로 녹지의 도로 표면온도 져감 효과에 관한 연구)

  • Cha, Hye-Jin;Lim, Ji-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.3
    • /
    • pp.107-116
    • /
    • 2011
  • One of the major factors which increase urban temperature is roads. This paper is aimed to investigate the effect of urban roadside vegetation on the road surface temperature. For this, surface temperature was measured at 18 spots using the thermal imaging camera in terms of road components including use of roadside land use, roadway, sidewalk, roadside vegetation and vegetation median barrier. The size of the roadside vegetation and related urban road characteristics were also measured. In terms of the effect of roadside vegetation on a decrease in road surface temperature, the roadside land use as a green area or open space was the highest, followed by the size of vegetation median barrier and the size of roadside vegetation. Besides road surroundings, an increase in the green zone such as roadside vegetation and median strip vegetation has a significant impact on lowering road surface temperature. Therefore, a good solution for reducing urban heat island effects would be to increase the area of roadside vegetation and green areas along roads.

Application of High-Resolution Satellite Image to Vegetation Environment Evaluation in the Urban Area

  • Shibata, Satoshi;Tachiiri, Kaoru;Gotoh, Keinosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.502-504
    • /
    • 2003
  • The main objective of this study is to examine the effectiveness of newly available high spatial resolution satellite images, in evaluating vegetation environment of the urban areas. In doing so, we have used satellite images from QuickBird and selected some areas of Fukuoka City, Kyushu Japan, as study area. The results of the study revealed that, high resolution images are more effective in close monitoring of the vegetation status and green plants should be planted in open spaces and roofs of urban areas to increase vegetation, which will in turn act as a remedy to reduce heat island phenomenon.

  • PDF

Phytosociological Study on the Froest Begetation of Mt. Kaya (가야산 삼림식생에 대한 식물사회학적 연구)

  • Lee, Ho-Joon;Byun, Doo-Weon;Kim, Won-Sik;Lee, Hae-Seok;Kim, Chang-Ho
    • The Korean Journal of Ecology
    • /
    • v.16 no.3
    • /
    • pp.287-303
    • /
    • 1993
  • A phytosociological study of forest vegetation of Mt. Kaya was carried out from August 1988 to September 1992. The forest vegetation of the area was classified into 3 communities (Quercus monogolica community, Lindera erythrocarpa community, Pinus densiflora community) and 3 subunits (Rhododendron mucronulatum subunit, Platycarya strobilacea subunit, typical subunit of Pinusdensiflora community). The Pinus densiflora community was located at the lower altitudes (100~300m) than those of other communities. The Lindera erythrocarpa community was located at the upper altitude (500m). Most of the inverstigated area were occupied by the secondary forest of Pinus densiflora community in the actual vegetation map and the profile diagram, suggesting that it was frequently destroyed by human interference

  • PDF

Changes of Landscape Pattern and Vegetation Structure in Rural Areal Area Disturbed by Fire (산불지역에서 경관유형과 식생구조의 변화)

  • 이창석;홍선기
    • The Korean Journal of Ecology
    • /
    • v.21 no.4
    • /
    • pp.389-399
    • /
    • 1998
  • this study was focused on the effects of fire on spatial change of vegetation landscape in rural region. Fire types recognized as erown fire, severe surface fire and light surface fire in order of increasing intensity were described in a fire map. GIS was introduced to understand the relationship between fire types and topographic conditions or vegetation types. We also investigated land-use type and regeneration strategies after burning. Fire intensity depended on topographic conditions and vegetation types. Special land-use type in this area was collection of edible mushroom (Tricholoma matsutake). Mushrooms had been obtained from Pinus densiflora forests existing as edaphic climax or managed artificially. Regeneration strategy in burned areas was to make sprouts from burned oak stumps. A higher density and growth rate of sprouts, as compared to those on unburned areas, facilitated vegetation succession from P. densiflora forest to oak forest and consequently led to change of landscape pattern.

  • PDF

Analysis of Cropland Spectral Properties and Vegetation Index Using UAV (UAV를 이용한 농경지 분광특성 및 식생지수 분석)

  • LEE, Geun-Sang;CHOI, Yun-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.86-101
    • /
    • 2019
  • Remote sensing technology has been continuously developed both quantitatively and qualitatively, including platform development, exploration area, and exploration functions. Recently, the use cases and related researches in the agricultural field are increasing. Also, since it is possible to detect and quantify the condition of cropland and establish management plans and policy support for cropland and agricultural environment, it is being studied in various fields such as crop growth abnormality determination and crop estimation based on time series information. The purpose of this study was to analyze the vegetation index for agricultural land reclamation area using a UAV equipped with a multi-spectral sensor. In addition, field surveys were conducted to evaluate the accuracy of vegetation indices calculated from multispectral image data obtained using UAV. The most appropriate vegetation index was derived by evaluating the correlation between vegetation index calculated by field survey and vegetation index calculated from UAV multispectral image, and was used to analyze vegetation index of the entire area.