• Title/Summary/Keyword: vegetation area

Search Result 2,127, Processing Time 0.032 seconds

A study on the flora of Gyeryongsan (계룡산의 자원식물상 연구)

  • Tho Jae-Hwa;Kim Dong-Kap;Tae Kyoung-Hwan;Kim Joo-Hwan
    • Korean Journal of Plant Resources
    • /
    • v.18 no.1
    • /
    • pp.85-116
    • /
    • 2005
  • Gyeryongsan(845m) is located at $36^{\circ}\;18'\;02'\;-36^{\circ}\;23'\;38'$ in latitude, at $127^{\circ}\;11'\;60'-127^{\circ}\;17'\;86'$ in longitude and on Nonsan City and Gongju City in Chungnam Province. Gyeryongsan shows the typical vegetation patterns including the middle area of temperate region represented by the secondary forests of Quercus mongotica and Q. serrata. And we tried to discuss on the distribution and availability of vascular plants including economical plants. The results of plant collection and their investigation from April in 1998 to October in 2002 are as follows : The vascular plants consist of total 684 taxa; 3 hybrids, 12 forms, 84 varieties, 1 subspecies, 584 species, 357 genera, 100 families, 34 orders, 4 classes, 3 subphyla. In this area useful resources plants were 277 taxa$(40.5\%)$ forage source, 261 taxa$(38.2\%)$ edible source, 204 taxa$(29.8\%)$ medicinal source, 80 taxa$(11.7\%)$ ornamental source, 20 taxa$(2.9\%)$ timber source, 3 taxa$(0.4\%)$ industrial raw material source respectively. Also, the Korean endemic plants are 29 taxa($4.2\%$ among total 684 taxa); 5 varieties, 24 species, 27 genera, 20 families. And rare and endangered plants are 2 taxa; Paeonia obovate, Gastrodia elata. Also, the naturalized plants are 31 taxa($4.5\%$ among total 684 taxa and $13.7\%$ among the total naturalized plants in Korea).

A Study on the Characteristics of Humanistic Landscape in Pyongyang Castle through Pictorial Maps in the Late Joseon Dynasty (조선후기 회화식 고지도를 통해 본 평양성의 인문경관 특성)

  • Kim, Mi-Jung;So, Hyun-Su
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.2
    • /
    • pp.14-30
    • /
    • 2020
  • This study focuses on the fact that pictorial maps in the late Joseon Dynasty were conceptual diagrams with the place names perceived by the people at the time of their production. In this regard, targeting on five pictorial maps, the humanistic landscape characteristics of Pyongyang, which had cultural identities such as a historically old, commercial, and Pungnyu(appreciation for the arts) city, were derived as follows. First, the historic legitimacy of Pyongyang Castle was represented by ritual and religious facilities. They include 'Dangunjeon' and 'Gijagung' related to the nation founder, 'Munmujeong': the remains of Goguryeo, 'Sajikdan' & 'Pyongyanggangdan': the place of the national rites, Hyanggyo and Seowon: education & rite functions, Buddhism and Taoist facilities, 'Yongsindang', 'Sanshindang', and 'Jesindan': folk religion facilities. Gija-related facilities, which became symbols of Pyongyang due to the importance of Small-Sinocentrism and Gija dignity tendency, were distributed throughout Pyongyang Castle though, the facilities related to King Dongmyeong of Goguryeo and the spaces of religion praying for blessings are spread in Bukseong and on the riverside of Daedonggang each. Second, as a Pyongando Province's economic center, Pyongyang's commercial landscape was represented by logistics and transportation facilities. The Daedonggang River, which was in charge of transportation functions, had many decks such as 'Yangmyeongpo', 'Cheongryongpo' and 'Waeseongjin' and bridges, such as 'Yeongjegyo' and 'Gangdonggyo', which connected major transportation routes. The road network was created in Oeseong area to facilitate logistics transportation and management, and many warehouses named after the jurisdiction of Pyongyangbu were distributed near the roads and Provincial Offices of the main gates. In addition, it was characterized by the urban area systematically divided with hierarchical roads, 'Bukjangnim' of willow trees planted on the main entrance roads of Pyongyang Castle, a linear landscape created by 'Simnijangnim' consisting of mixed forests with elm trees. Third, Pungnyu City is realized by the distribution of amusement facilities. The riverside of Daedonggang adjacent to Naeseong exhibits characteristics of artificial landscape such as a canal leading to the inside of the castle, a docking facility with embankments, and a port with cargo ships anchored. However, Bukseong of the natural surroundings had numerous pavilions and platforms such as 'Bubyeongnu', 'Eulmildae', 'Choeseungdae', 'Jebyeokjeong' and engraved letters such as 'Cheongnyubyeok', 'Jangbangho'. 'Osunjeong', 'Byeogwolji', 'Banwolji' near 'Sachang', and 'Aeryeondang', built on the island of a square pond, created waterscape in Naeseong invisible from the Daedonggang, and for practical purposes, ponds and repeated willow vegetation landscape related to Gija were placed in the western rampart of Jungseong. In addition, 'Seonyeondong', a cemetery of Gisaeng, located near by Chilseongmun, was used as poem titles and themes by literary people, contributing to the creation of the Pungnyu image of Pyongyang.

Measuring Economic Values of Amenity Services from Urban Greenspaces in the Seoul Metropolitan Area Using Choice Experiments (선택실험을 이용한 서울 도시녹지 어메니티의 경제가치 평가)

  • Choi, Andy S.;Eom, Young Sook
    • Environmental and Resource Economics Review
    • /
    • v.27 no.1
    • /
    • pp.105-138
    • /
    • 2018
  • This paper reports novel empirical results of a choice experiment that elicited the economic values that residents in the Seoul metropolitan area place on the amenity services realized from the landscape views and accessibilities to urban green spaces (i.e., mountains, rivers and urban parks). The 1,000 respondents in the sample were divided into two residential of housing types (apartments vs. houses) and occupancy types (owners vs. tenants). Residents living in apartments are willing to pay an average of 28% (5.0 million KRW per year) above the current housing prices per household for a mountain view, compared to an apartment view from their living room. Their willingness to pay values are about 22% (4.0 million KRW per year) and 10% (1.8 million KRW per year) respectively for a river view and a urban park view. Economic benefits of having access (i.e., a 10 minutes working distance) to mountains, rivers and urban parks are estimated to be an average of 16% (2.9 million KRW per year), 20% (3.6 million KRW per year) and 18% (3.2 million KRW per year), respectively, above the current housing prices per household. On the other hand, access benefits for those residing in houses are 18% (4.7 million KRW per year), 16% (4.1 million KRW per year) and 22% (5.6 million KRW per year) per household, respectively. They are also willing to pay an average of 35% (8.9 million KRW per year) above the current housing prices for keeping or having a garden or vegetation bed. Furthermore, a strong "greenspace premium" is centered around the three Gangnam districts for house-dwellers, whereas it is areas of "new real estate boom" for apartment dwellers.

The Development of Vulnerable Elements and Assessment of Vulnerability of Maeul-soop Ecosystem in Korea (한국 마을숲 생태계 취약요소 발굴 및 취약성 평가)

  • Lim, Jeong-Cheol;Ryu, Tae-Bok;Ahn, Kyeong-Hwan;Choi, Byoung-Ki
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.4
    • /
    • pp.57-65
    • /
    • 2016
  • Maeul-soop(Village forest) is a key element of Korean traditional village landscape historically and culturally. However, a number of Maeul-soops have been lost or declined due to various influences since the modern age. For this Maeul-soop that has a variety of conservation values including historical, cultural and ecological ones, attention and efforts for a systematic conservation and restoration of Maeul-soop are needed. The purpose of the present study is to provide information on ecological restoration and sustainable use and management of Maeul-soops based on component plant species, habitat and location characteristics of 499 Maeul-soops spread throughout Korea. Major six categories of threat factors to Maeul-soop ecosystem were identified and the influence of each factor was evaluated. For the evaluation of weight by threat factors for the influence on the vulnerability of Maeul-soop ecosystem, more three-dimensional analysis was conducted using Analytic Hierarchy Process (AHP) analysis method. In the results of evaluation using AHP analysis method, reduction of area, among six categories, was spotted as the biggest threat to existence of Maeul-soops. Next, changes in topography and soil environment were considered as a threat factor of qualitative changes in Maeul-soop ecosystem. Influence of vegetation structure and its qualitative changes on the loss or decline of Masul-soop was evaluated to be lower than that of changes in habitat. Based on weight of each factor, the figures were converted with 100 points being the highest score and the evaluation of vulnerability of Maeul-soop was conducted with the converted figures. In the result of evaluation of vulnerability of Maeul-soops, grade III showed the highest frequency and a normal distribution was formed from low grade to high grade. 38 Maeul-soops were evaluated as grade I which showed high naturality and 10 Maeul-soops were evaluated as grade V as their maintenance was threatened. Also in the results of evaluation of vulnerability of each Maeul-soop, restoration of Maeul-soop's own area was found as top priority to guarantee the sustainability of Maeul-soops. It was confirmed that there was a need to prepare a national level ecological response strategy for each vulnerability factor of Maeul-soop, which was important national ecological resources.

Development of a Classification Method for Forest Vegetation on the Stand Level, Using KOMPSAT-3A Imagery and Land Coverage Map (KOMPSAT-3A 위성영상과 토지피복도를 활용한 산림식생의 임상 분류법 개발)

  • Song, Ji-Yong;Jeong, Jong-Chul;Lee, Peter Sang-Hoon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.686-697
    • /
    • 2018
  • Due to the advance in remote sensing technology, it has become easier to more frequently obtain high resolution imagery to detect delicate changes in an extensive area, particularly including forest which is not readily sub-classified. Time-series analysis on high resolution images requires to collect extensive amount of ground truth data. In this study, the potential of land coverage mapas ground truth data was tested in classifying high-resolution imagery. The study site was Wonju-si at Gangwon-do, South Korea, having a mix of urban and natural areas. KOMPSAT-3A imagery taken on March 2015 and land coverage map published in 2017 were used as source data. Two pixel-based classification algorithms, Support Vector Machine (SVM) and Random Forest (RF), were selected for the analysis. Forest only classification was compared with that of the whole study area except wetland. Confusion matrixes from the classification presented that overall accuracies for both the targets were higher in RF algorithm than in SVM. While the overall accuracy in the forest only analysis by RF algorithm was higher by 18.3% than SVM, in the case of the whole region analysis, the difference was relatively smaller by 5.5%. For the SVM algorithm, adding the Majority analysis process indicated a marginal improvement of about 1% than the normal SVM analysis. It was found that the RF algorithm was more effective to identify the broad-leaved forest within the forest, but for the other classes the SVM algorithm was more effective. As the two pixel-based classification algorithms were tested here, it is expected that future classification will improve the overall accuracy and the reliability by introducing a time-series analysis and an object-based algorithm. It is considered that this approach will contribute to improving a large-scale land planning by providing an effective land classification method on higher spatial and temporal scales.

Effect of micro-environment in ridge and southern slope on soil respiration in Quercus mongolica forest

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.210-218
    • /
    • 2018
  • Background: Soil respiration (Rs) is a major factor of the absorption and accumulation of carbon through photosynthesis in the ecosystem carbon cycle. This directly affects the amount of net ecosystem productivity, which affects the stability and sustainability of the ecosystem. Understanding the characteristics of Rs is indispensable to scientifically understand the carbon cycle of ecosystems. It is very important to study Rs characteristics through analysis of environmental factors closely related to Rs. Rs is affected by various environmental factors, such as temperature, precipitation, soil moisture, litter supply, organic matter content, dominant plant species, and soil disturbance. This study was conducted to analyze the effects of micro-topographical differences on Rs in forest vegetation by measuring the Rs on the ridge and southern slope sites of the broadly established Quercus mongolica forest in the central Korean area. Method: Rs, Ts, and soil moisture data were collected at the southern slope and ridge of the Q. mongolica forest in the Mt. Jeombong area in order to investigate the effects of topographical differences on Rs. Rs was collected by the closed chamber method, and data collection was performed from May 2011 to October 2013, except Winter seasons from November to April or May. For collecting the raw data of Rs in the field, acrylic collars were placed at the ridge and southern slope of the forest. The accumulated surface litter and the soil organic matter content (SOMC) were measured to a 5 cm depth. Based on these data, the Rs characteristics of the slope and ridge were analyzed. Results: Rs showed a distinct seasonal variation pattern in both the ridge and southern slope sites. In addition, Rs showed a distinct seasonal variation with high and low Ts changes. The average Rs measurements for the two sites, except for the Winter periods that were not measured, were $550.1\;mg\;CO_2m^{-2}h^{-1}$ at the ridge site and $289.4\;mg\;CO_2m^{-2}h^{-1}$ at the southern slope, a difference of 52.6%. There was no significant difference in the Rs difference between slopes except for the first half of 2013, and both sites showed a tendency to increase exponentially as Ts increased. In addition, although the correlation is low, the difference in Rs between sites tended to increase as Ts increased. SMC showed a large fluctuation at the southern slope site relative to the ridge site, as while it was very low in 2013, it was high in 2011 and 2012. The accumulated litter of the soil surface and the SOMC at the depth range of 0~5 cm were $874g\;m^{-2}$ and 23.3% at the ridge site, and $396g\;m^{-2}$ and 19.9% at the southern slope site. Conclusions: In this study, Rs was measured for the ridge and southern slope sites, which have two different results where the surface litter layer is disturbed by strong winds. The southern slope site shows that the litter layer formed in autumn due to strong winds almost disappeared, and while in the ridge site, it became thick due to the transfer of litter from the southern slope site. The mean Rs was about two times higher in the ridge site compared to that in the southern slope site. The Rs difference seems to be due to the difference in the amount of litter accumulated on the soil surface. As a result, the litter layer supplied to the soil surface is disturbed due to the micro-topographical difference, as the slope and the change of the community structure due to the plant season cause heterogeneity of the litter layer development, which in turn affects SMC and Rs. Therefore, it is necessary to introduce and understand these micro-topographical features and mechanisms when quantifying and analyzing the Rs of an ecosystem.

A Review of Recent Climate Trends and Causes over the Korean Peninsula (한반도 기후변화의 추세와 원인 고찰)

  • An, Soon-Il;Ha, Kyung-Ja;Seo, Kyong-Hwan;Yeh, Sang-Wook;Min, Seung-Ki;Ho, Chang-Hoi
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.237-251
    • /
    • 2011
  • This study presents a review on the recent climate change over the Korean peninsula, which has experienced a significant change due to the human-induced global warming more strongly than other regions. The recent measurement of carbon dioxide concentrations over the Korean peninsula shows a faster rise than the global average, and the increasing trend in surface temperature over this region is much larger than the global mean trend. Recent observational studies reporting the weakened cold extremes and intensified warm extremes over the region support consistently the increase of mean temperature. Surface vegetation greenness in spring has also progressed relatively more quickly. Summer precipitation over the Korean peninsula has increased by about 15% since 1990 compared to the previous period. This was mainly due to an increase in August. On the other hand, a slight decrease in the precipitation (about 5%) during Changma period (rainy season of the East Asian summer monsoon), was observed. The heavy rainfall amounts exhibit an increasing trend particularly since the late 1970s, and a consecutive dry-day has also increased primarily over the southern area. This indicates that the duration of precipitation events has shortened, while their intensity became stronger. During the past decades, there have been more stronger typhoons affecting the Korean peninsula with landing more preferentially over the southeastern area. Meanwhile, the urbanization effect is likely to contribute to the rapid warming, explaining about 28% of total temperature increase during the past 55 years. The impact of El Nino on seasonal climate over the Korean peninsula has been well established - winter [summer] temperatures was generally higher [lower] than normal, and summer rainfall tends to increase during El-Nino years. It is suggested that more frequent occurrence of the 'central-Pacific El-Nino' during recent decades may have induced warmer summer and fall over the Korean peninsula. In short, detection and attribution studies provided fundamental information that needed to construct more reliable projections of future climate changes, and therefore more comprehensive researches are required for better understanding of past climate variations.

Understanding the Impact of Environmental Changes on the Number of Species and Populations of Odonata after Creating a Constructed Wetland (인공습지 조성 후 환경변화가 잠자리목의 종수 및 개체수에 미치는 영향 파악)

  • Lee, Soo-Dong;Bae, Soo-Hyoung;Lee, Gwang-Gyu
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.515-529
    • /
    • 2020
  • Constructed wetlands undergo biological and physical changes such as an increase in the proportion of arid plants due to the natural succession process after formation. It can adversely affect not only the purification function but also the habitat of species. As such, this study aims to identify environmental factors affecting biodiversity and propose management plans based on the monitoring results of physical environmental changes and the emergence of species in seven constructed wetlands selected based on the water depth and surrounding conditions among the lands purchased by the Nakdong River basin. We examined the environmental conditions and emergence of the Odonata, which is a wetland-dependent species, to predict the trend of changes in biodiversity and abundance. The results showed that the open water area decreased as the emergent plants spread to the deep water in 2015 compared to 2012 when they were initially restored to a depth of 0.2 to 1 m. While a total of 54 dragonfly species were observed, the habitat diversity, such as vegetation, water surface, and grassland, remained similar to the initial formation of the wetlands despite the expansion of the emergent plants. On the other hand, the number of Agrionidae species, which prefer areas with fewer aquatic plants, decreased between 2012 and 2015 due to the diminished water surface. The p-values of the differences in the number of species and population between wetlands by year were 2.568e-09 and 1.162e-08, respectively, indicating the statistically significant differences. The decrease in open water surface was found to have the greatest effect on the biodiversity and habitat density of dragonflies. The time-series survey of constructed wetlands confirmed that the spread of Phragmites communis, P. japonica, Typha orientalis, etc., caused a decrease in species diversity. It suggests that environmental management to maintain the open water surface area is necessary.

Prediction of Distribution Changes of Carpinus laxiflora and C. tschonoskii Based on Climate Change Scenarios Using MaxEnt Model (MaxEnt 모델링을 이용한 기후변화 시나리오에 따른 서어나무 (Carpinus laxiflora)와 개서어나무 (C. tschonoskii)의 분포변화 예측)

  • Lee, Min-Ki;Chun, Jung-Hwa;Lee, Chang-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.55-67
    • /
    • 2021
  • Hornbeams (Carpinus spp.), which are widely distributed in South Korea, are recognized as one of the most abundant species at climax stage in the temperate forests. Although the distribution and vegetation structure of the C. laxiflora community have been reported, little ecological information of C. tschonoskii is available. Little effort was made to examine the distribution shift of these species under the future climate conditions. This study was conducted to predict potential shifts in the distribution of C. laxiflora and C. tschonoskii in 2050s and 2090s under the two sets of climate change scenarios, RCP4.5 and RCP8.5. The MaxEnt model was used to predict the spatial distribution of two species using the occurrence data derived from the 6th National Forest Inventory data as well as climate and topography data. It was found that the main factors for the distribution of C. laxiflora were elevation, temperature seasonality, and mean annual precipitation. The distribution of C. tschonoskii, was influenced by temperature seasonality, mean annual precipitation, and mean diurnal rang. It was projected that the total habitat area of the C. laxiflora could increase by 1.05% and 1.11% under RCP 4.5 and RCP 8.5 scenarios, respectively. It was also predicted that the distributional area of C. tschonoskii could expand under the future climate conditions. These results highlighted that the climate change would have considerable impact on the spatial distribution of C. laxiflora and C. tschonoskii. These also suggested that ecological information derived from climate change impact assessment study can be used to develop proper forest management practices in response to climate change.

Distributional Characteristics, Population Structures and Fruition Dynamics of Korean Endemic plant, Prunus choreiana H. T. Im (한국특산 복사앵도나무(Prunus choreiana H. T. Im)의 분포특성, 개체군구조 및 결실동태)

  • Kim, Young-Chul;Chae, Hyun-Hee;Son, Sung-Won
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.2
    • /
    • pp.177-201
    • /
    • 2022
  • Following the adoption of the global plant conservation strategies at the Conference of the Parties for Biodiversity Conservation, diligent actions to achieve each targets are actively carried out. In particular, the need for ecological conservation research to achieve targets 2 and 7 of GSPC-2020 has increased. The priority taxa to accomplish the objectives of GSPC-2020 are rare and endemic plants. In particular, endemic plants with limited distribution in specific regions are evaluated to face a high risk of extinction. To address the necessity to preserve endemic plants, we investigated the distribution of Prunus choreiana H. T. Im, a Korean endemic plant. After that, we examined the vegetational environment of the habitat of P. choreiana and evaluated its population structure. The productivity of its fruits and the effects of pollinators on fruit production were evaluated as well. The fruiting ratio was calculated based on the number of flowers produced. Lastly, we observed the annual growth characteristics of P. choreiana. The habitats of P. choreiana did not show a specific type of vegetation. All of them were located in a limestone area of Gangwon-do in the central Korean Peninsula and occupied a site where the coverage of the tree layer and the sub-tree layer was not high or did not exist. The population structure of P. choreiana contained a high proportion of mature plants capable of producing fruits and a low proportion of seedlings and Juvenile plants. We found that the production of fruits required pollinators and was affected by the performance of each plant. Although P. choreiana produces many flowers, only a maximum of 20% and only 2-6% on average bear fruits. These flowering characteristics may be due to pollinators' low abundance and activity during the flowering season (between mid-March and early April), suggesting that many flowers are needed to attract more pollinators. We rarely observed the re-establishment of seedlings in the population of P. choreiana. Despite that, we predict the population to persist owing to its long lifespan and periodic production of numerous fruits. However, if the tree layer and sub-tree layer in competing status with P. choreiana increase their crown density, they are expected to inhibit the growth of P. choreiana and affect the risk of its extinction. Therefore, the current changes in the vegetational environment of the habitats are expected to decrease the number and extent of P. choreiana in the long term. The results of this study may serve as primary and important data necessary for the achievement of GSPC-2020 objectives.