• Title/Summary/Keyword: vegetation area

Search Result 2,127, Processing Time 0.037 seconds

A Study on the Efficient Utilization of Spatial Data for Heat Mapping with Remote Sensing and Simulation (원격탐사 및 시뮬레이션의 열지도 구축을 위한 공간정보 활용 효율화 연구)

  • Cho, Young-Il;Yoon, Donghyeon;Lim, Youngshin;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1421-1434
    • /
    • 2020
  • The frequency and intensity of heatwaves have been increasing due to climate change. Since urban areas are more severely damaged by heatwaves as they act in combination with the urban heat island phenomenon, every possible preparation for such heat threats is required. Many overseas local governments build heat maps using a variety of spatial information to prepare for and counteract heatwaves, and prepare heatwave measures suitable for each region with different spatial characteristics within a relevant city. Building a heat map is a first and important step to prepare for heatwaves. The cases of heat map construction and thermal environment analysis involve various area distributions from urban units with a large area to local units with a small area. The method of constructing a heat map varies from a method utilizing remote sensing to a method using simulation, but there is no standard for using differentiated spatial information according to spatial scale, so each researcher constructs a heat map and analyzes the thermal environment based on different methods. For the above reason, spatial information standards required for building a heat map according to the analysis scale should be established. To this end, this study examined spatial information, analysis methodology, and final findings related to Korean and oversea analysis studies of heatwaves and urban thermal environments to suggest ways to improve the utilization efficiency of spatial information used to build urban heat maps. As a result of the analysis, it was found that spatial, temporal, and spectral resolutions, as basic resolutions, are necessary to construct a heat map using remote sensing in the use of spatial information. In the use of simulations, it was found that the type of weather data and spatial resolution, which are input condition information for simulation implementation, differ according to the size of analysis target areas. Therefore, when constructing a heat map using remote sensing, spatial, spectral, and temporal resolution should be considered; and in the case of using simulations, the spatial resolution, which is an input condition for simulation implementation, and the conditions of weather information to be inputted, should be considered in advance. As a result of understanding the types of monitoring elements for heatwave analysis, 19 types of elements were identified such as land cover, urban spatial characteristics, buildings, topography, vegetation, and shadows, and it was found that there are differences in the types of the elements by spatial scale. This study is expected to help give direction to relevant studies in terms of the use of spatial information suitable for the size of target areas, and setting monitoring elements, when analyzing heatwaves.

BVOCs Estimates Using MEGAN in South Korea: A Case Study of June in 2012 (MEGAN을 이용한 국내 BVOCs 배출량 산정: 2012년 6월 사례 연구)

  • Kim, Kyeongsu;Lee, Seung-Jae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.1
    • /
    • pp.48-61
    • /
    • 2022
  • South Korea is quite vegetation rich country which has 63% forests and 16% cropland area. Massive NOx emissions from megacities, therefore, are easily combined with BVOCs emitted from the forest and cropland area, then produce high ozone concentration. BVOCs emissions have been estimated using well-known emission models, such as BEIS (Biogenic Emission Inventory System) or MEGAN (Model of Emission of Gases and Aerosol from Nature) which were developed using non-Korean emission factors. In this study, we ran MEGAN v2.1 model to estimate BVO Cs emissions in Korea. The MO DIS Land Cover and LAI (Leaf Area Index) products over Korea were used to run the MEGAN model for June 2012. Isoprene and Monoterpenes emissions from the model were inter-compared against the enclosure chamber measurements from Taehwa research forest in Korea, during June 11 and 12, 2012. For estimating emission from the enclosed chamber measurement data. The initial results show that isoprene emissions from the MEGAN model were up to 6.4 times higher than those from the enclosure chamber measurement. Monoterpenes from enclosure chamber measurement were up to 5.6 times higher than MEGAN emission. The differences between two datasets, however, were much smaller during the time of high emissions. More inter-comparison results and the possibilities of improving the MEGAN modeling performance using local measurement data over Korea will be presented and discussed.

Evaluation of Space-based Wetland InSAR Observations with ALOS-2 ScanSAR Mode (습지대 변화 관측을 위한 ALOS-2 광대역 모드 적용 연구)

  • Hong, Sang-Hoon;Wdowinski, Shimon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.447-460
    • /
    • 2022
  • It is well known that satellite synthetic aperture radar interferometry (InSAR) has been widely used for the observation of surface displacement owing to earthquakes, volcanoes, and subsidence very precisely. In wetlands where vegetation exists on the surface of the water, it is possible to create a water level change map with high spatial resolution over a wide area using the InSAR technique. Currently, a number of imaging radar satellites are in operation, and most of them support a ScanSAR mode observation to gather information over a large area at once. The Cienaga Grande de Santa Marta (CGSM) wetland, located in northern Colombia, is a vast wetland developed along the Caribbean coast. The CGSM wetlands face serious environmental threats from human activities such as reclamation for agricultural uses and residential purposes as well as natural causes such as sea level rise owing to climate change. Various restoration and protection plans have been conducted to conserve these invaluable environments in recognition of the ecological importance of the CGSM wetlands. Monitoring of water level changes in wetland is very important resources to understand the hydrologic characteristics and the in-situ water level gauge stations are usually utilized to measure the water level. Although it can provide very good temporal resolution of water level information, it is limited to fully understand flow pattern owing to its very coarse spatial resolution. In this study, we evaluate the L-band ALOS-2 PALSAR-2 ScanSAR mode to observe the water level change over the wide wetland area using the radar interferometric technique. In order to assess the quality of the interferometric product in the aspect of spatial resolution and coherence, we also utilized ALOS-2 PALSAR-2 stripmap high-resolution mode observations.

Analysis of Thermal Environment Characteristics by Spatial Type using UAV and ENVI-met (UAV와 ENVI-met을 활용한 공간 유형별 열환경 특성 분석)

  • KIM, Seoung-Hyeon;PARK, Kyung-Hun;LEE, Su-Ah;SONG, Bong-Geun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.28-43
    • /
    • 2022
  • This study classified UAV image-based physical spatial types for parks in urban areas of Changwon City and analyzed thermal comfort characteristics according to physical spatial types by comparing them with ENVI-met thermal comfort results. Physical spatial types were classified into four types according to UAV-based NDVI and SVF characteristics. As a result of ENVI-met thermal comfort, the TMRT difference between the tree-dense area and other areas was up to 30℃ or more, and it was 19. 6℃ at 16:00, which was the largest during the afternoon. As a result of analyzing UAV-based physical spatial types and thermal comfort characteristics by time period, it was confirmed that the physical spatial types with high NDVI and high SVF showed a similar to thermal comfort change patterns by time when using UAV, and the physical spatial types with dense trees and artificial structures showed a low correlation to thermal comfort change patterns by time when using UAV. In conclusion, the possibility of identifying the distribution of thermal comfort based on UAV images was confirmed for the spatial type consisting of open and vegetation, and the area adjacent to the trees was found to be more thermally pleasant than the open area. Therefore, in the urban planning stage, it is necessary to create an open space in consideration of natural covering materials such as grass and trees, and when using artificial covering materials, it is judged that spatial planning should be done considering the proximity to trees and buildings. In the future, it is judged that it will be possible to quickly and accurately identify urban climate phenomena and establish urban planning considering thermal comfort through ground LIDAR and In-situ measurement-based UAV image correction.

Interpretation of Landscape Restoration and Maintenance in Changgyeonggung Palace through the Preservation Principles of Cultural Heritage (문화재 보존원칙으로 본 창경궁 조경 복원정비 양상 해석)

  • Kang, Jae-Ung;So, Hyun-Su
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.4
    • /
    • pp.15-31
    • /
    • 2022
  • This study interpreted the logical validity of the landscape restoration and maintenance patterns of Changgyeonggung Palace, where modern landscapes coexist. The results of the study are as follows; First, the changes in the landscape restoration and maintenance attitude concerning the Changgyeonggung management organization were identified. With the establishment of the Office of the Imperial Garden, an imperial property was nationalized. The Cultural Heritage Managing Department was opened in 1961, and Changgyeonggung Palace were preserved as designated as historical sites in 1963. An environmental purification was implemented by the Changgyeonggung Office as a follow-up measure for restoration in 1983. As the Cultural Heritage Administration promoted in 1999 and the Royal Palaces and Tombs Center was established in 2019, the palace has been managed professionally as a palace landscape to provide a viewing environment. Second, In the 'Purification Period of Changgyeongwon(1954~1977)', environmental purification was carried out to restore amusement facilities, install facilities for cherry blossom viewing, and develop the place into a national zoo. In the 'Reconstruction Period of Changgyeonggung(1983~1986)', restoring function as an urban park, reserving green areas, the outside space was recreated in the traditional feel, and the forest area was generally maintained. In the 'Supplementation Period of Traditional Landscape Architecture Space(1987~2009)', a uniform green landscape was created with pine trees and various vegetation landscapes centered on the flower beds. In the 'Improvement and Maintenance Period of Viewing Environment(2010~2022), a master plan was reestablished on the premise of utilization, but maintenance has been carried out in a small scale centering on unit space. Third, regarding the validity of the landscape restoration and maintenance, It was found in terms of 'originality' that the recovery of the palace system has not been expanded for over 40 years in existing areas. The 'characteristics of the times', which shows whether multi-layered history was taken into account, Changgyeongwon was excluded from the discussion in the process of setting the base year twice. In terms of 'integrity,' the area of the Grand Greenhouse where the historic states coexists needs a maintenance policy that binds the greenhouse, carpet flower bed, and Chundangji Pond. The 'utility' identified as the utilization of spaces suggests the establishment of a sense of place in the Grand Greenhouse area, which is concentrated with programs different from other areas.

Research Trend of Estuarine Ecosystem Monitoring and Assessment (국내 하구 수생태계 현황 및 건강성 조사의 성과와 하구 생태계의 국외 연구동향)

  • Won, Doo-Hee;Lim, Sung-Ho;Park, Jihyung;Moon, Jeong-Suk;Do, Yuno
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • An estuary is an area where a freshwater river or stream meets the ocean. Even before the importance of the value of estuaries was recognized, the estuary was lost because of large-scale conversion by draining, filling, damming, and dredging. In South Korea, 643 estuaries are located, and the total area is 3,248,300 ha, accounting for 32.5% of the total area of South Korea. Over 35% of Korean estuaries are closed estuaries which are only temporally connected with the sea, either permanently or periodically. Since 2008, in order to preserve the estuary ecosystem and solve major issues in the estuary by accumulating knowledge about the estuarine ecosystem, the Ministry of Environment of Republic of Korea has been conducting the "Estuarine Ecosystem Monitoring and Assessment Project". At 668 sites of 325 estuaries, epilithic diatom, benthic macroinvertebrate, fish, and vegetation are investigated, and the habitat condition of each site is evaluated using the newly developed biotic index. More than 100 researchers annually record 2,097 species of estuaries according to the standardized survey guidelines over the past 14 years and provide strictly managed data necessary for establishing estuaries conservation policies. As a result of bibliometric analysis of 1,195 research articles related to the monitoring and assessment of the estuarine ecosystem, research on pollutants such as heavy metals and sediment control have recently been conducted. "Estuarine Ecosystem Monitoring and Assessment Project" is an ecological monitoring type of long-term mandated monitoring that is usually focused on identifying trends. Although it is difficult to identify the mechanism influencing a change in an ecosystem through long-term mandated monitoring, providing empirical data for supporting evidence-based policy, decision-making, and the management of ecosystems. In order to increase the efficiency of the project, research to investigate the relationship between sediments and pollutants and organisms can be conducted at specific estuaries or sites to compensate for the shortcomings of mandatory monitoring.

Comparison of NDVI in Rice Paddy according to the Resolution of Optical Satellite Images (광학위성영상의 해상도에 따른 논지역의 정규식생지수 비교)

  • Jeong Eun;Sun-Hwa Kim;Jee-Eun Min
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1321-1330
    • /
    • 2023
  • Normalized Difference Vegetation Index (NDVI) is the most widely used remote sensing data in the agricultural field and is currently provided by most optical satellites. In particular, as high-resolution optical satellite images become available, the selection of optimal optical satellite images according to agricultural applications has become a very important issue. In this study, we aim to define the most optimal optical satellite image when monitoring NDVI in rice fields in Korea and derive the resolution-related requirements necessary for this. For this purpose, we compared and analyzed the spatial distribution and time series patterns of the Dangjin rice paddy in Korea from 2019 to 2022 using NDVI images from MOD13, Landsat-8, Sentinel-2A/B, and PlanetScope satellites, which are widely used around the world. Each data is provided with a spatial resolution of 3 m to 250 m and various periods, and the area of the spectral band used to calculate NDVI also has slight differences. As a result of the analysis, Landsat-8 showed the lowest NDVI value and had very low spatial variation. In comparison, the MOD13 NDVI image showed similar spatial distribution and time series patterns as the PlanetScope data but was affected by the area surrounding the rice field due to low spatial resolution. Sentinel-2A/B showed relatively low NDVI values due to the wide near-infrared band area, and this feature was especially noticeable in the early stages of growth. PlanetScope's NDVI provides detailed spatial variation and stable time series patterns, but considering its high purchase price, it is considered to be more useful in small field areas than in spatially uniform rice paddy. Accordingly, for rice field areas, 250 m MOD13 NDVI or 10 m Sentinel-2A/B are considered to be the most efficient, but high-resolution satellite images can be used to estimate detailed physical quantities of individual crops.

Vegetation Change of Abies koreana Habitats in the Subalpine Zone of Mt. Jirisan over Eight Years (지리산 아고산대 구상나무 자생지의 8년간 식생 변화)

  • Da-Eun Park;Jeong-Eun Lee;Go Eun Park;Hee-Moon Yang;Ho-Jin Kim;Chung-Weon Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.2
    • /
    • pp.222-238
    • /
    • 2024
  • Coniferous species in subalpine ecosystems are known to be highly sensitive to climate change. Therefore, it is becoming increasingly important to monitor community and population dynamics. This study monitored 37 plots within the distribution area of Abies koreana on Mt. Jirisan for a period of eight years. We analyzed the importance value, density of living stems, mortality rate, recruitment rate, basal area, DBH (diameter of breast height) class distribution, and tree health status. Our results showed changes in the importance value based on the tree stratum, with A. koreana decreasing by 3.6% and Tripterygium regelii increasing by 2.5% in the tree layer. Between 2015 and 2023, there were 149 dead trees/ha (17.99% mortality rate) and 12 living trees/ha (1.02% recruitment rate) of A. koreana. The decrease in basal area was attributed to a decrease in the number of living trees. Tree mortality occurred in all DBH classes, with a particularly high decline in the <10 cm class (65 trees/ha reduced). In terms of changes in tree health status, the population of alive standing (AS) type trees, initially consisting of 539 trees/ha, has been transformed into alive standing (AS), alive lean (AL), and death standing (DS), accounting for 69.7%, 0.5%, and 13.8%, respectively. Meanwhile, DS-type trees have transitioned into dead broken (DB) and dead fallen (DF) types. This phenomenon is believed to be caused by strong winds in the subalpine region that pull up the rootlets from the soil. Further research on this finding is recommended.

Multi-Spectral Reflectance of Warm-Season Turfgrasses as Influenced by Deficit Irrigation (난지형 잔디의 가뭄 스트레스 상태로 인한 멀티스팩트럴 반사광 연구)

  • Lee, Joon-Hee;Trenholm, Laurie. E.;Unruh, J. Bryan
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • Remote sensing using multispectral radiometry may be a useful tool to detect drought stress in turf. The objective of this research was to investigate the correlation between drought stress and multispectral reflectance (MSR) from the turf canopy. St. Augustinegrass (Stenotaphrum secundatum[Walt.] Kuntze.) cultivars 'Floratam' and 'Palmetto', 'SeaIsle 1' seashore paspalum Paspalum vaginatum Swartz.), 'Empire' zoysiagrass (Zoysia japonica Steud.), and 'Pensacola' bahiagrass (Paspalum notatumFlugge) were established in lysimeters in the University of Florida Envirotron greenhouse facility in Gainesville. Irrigation was applied at 100%, 80%, 60%, or 40% of evapotranspiration (ET). Weekly evaluations included: a) shoot quality, leaf rolling, leaf firing b) soil moisture, chlorophyll content index; c) photosynthesis and d) multispectral reflectance. All the measurements were correlated with MSR data. Drought stress affected the infrared spectral region more than the visible spectral region. Reflectance sensitivity to water content of leaves was higher in the infrared spectral region than in the visible spectral region. Grasses irrigated at 100% and 80% of ET had no differences in normalized difference vegetation indices (NDVI), leaf area index (LAI), and stress indices. Grasses irrigated at 60% and 40% of ET had differences in NDVI, LAI, and stress indices. All measured wavelengths except 710nm were highly correlated (P < 0.0001) with turf visual quality, leaf firing, leaf rolling, soil moisture, chlorophyll content index, and photosynthesis. MSR could detect drought stress from the turf canopy.

Insects Diversity by Habitat Types in Middle Inland of DMZ, Korea (DMZ 중부지역의 서식유형에 따른 곤충다양성)

  • Park, Soeng-Joon;Lee, Jung-Hyo;Oh, Seung-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.5
    • /
    • pp.682-693
    • /
    • 2012
  • This study was intented to understand the insects diversity and forest in DMZ, and provide data and information required to preserve living creatures and geological management, and basic information for the management and preservation policies. This study has surveyed insects diversity by habitat types in Middle Inland of DMZ, Korea from 15 to 19 September, 2009. Totally there were 128 species belonging to 53 families of 10 orders, among them, 7 endermic species, 3 management of exotic species and 25 designated species were showed. The highest was 26 species of Hemiptera(20.31%) and then next turn are 22 species of Coleoptera(17.19%) and 20 species of Hymenoptera(15.63%) respectively. Dominant species are Ceracris nigricornislaeta (Bolivar)(0.152) in S1, Menida violacea Motschulsky(0.218) in S2, Stomorhina obsoleta (Wiedemann)(0.171) in S3, Ducetia japonica (Thunberg)(0.212) in S4, Oedaleus infernalis Saussure(0.178) in S5, Sepedon aenescens Wiedemann(0.268) in S6, Adelphocoris triannulatus (Stal)(0.257) in S7 and Ricania taeniata Stal(0.150) in S8 site. The diversity(H') and richness(RI) of insects at survey area as S2(H'=3.461, RI=9.64), S3(H'=3.457, RI=9.18) and S1(H'=3.447, RI=8.88) were higher than in the others and the lowest in S8(H'=2.790, RI=5.341). But the highest species evenness index(EI) occurred in S8(0.985).