• Title/Summary/Keyword: vector features

Search Result 999, Processing Time 0.025 seconds

Exploiting Chaotic Feature Vector for Dynamic Textures Recognition

  • Wang, Yong;Hu, Shiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4137-4152
    • /
    • 2014
  • This paper investigates the description ability of chaotic feature vector to dynamic textures. First a chaotic feature and other features are calculated from each pixel intensity series. Then these features are combined to a chaotic feature vector. Therefore a video is modeled as a feature vector matrix. Next by the aid of bag of words framework, we explore the representation ability of the proposed chaotic feature vector. Finally we investigate recognition rate between different combinations of chaotic features. Experimental results show the merit of chaotic feature vector for pixel intensity series representation.

Vector space based augmented structural kinematic feature descriptor for human activity recognition in videos

  • Dharmalingam, Sowmiya;Palanisamy, Anandhakumar
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.499-510
    • /
    • 2018
  • A vector space based augmented structural kinematic (VSASK) feature descriptor is proposed for human activity recognition. An action descriptor is built by integrating the structural and kinematic properties of the actor using vector space based augmented matrix representation. Using the local or global information separately may not provide sufficient action characteristics. The proposed action descriptor combines both the local (pose) and global (position and velocity) features using augmented matrix schema and thereby increases the robustness of the descriptor. A multiclass support vector machine (SVM) is used to learn each action descriptor for the corresponding activity classification and understanding. The performance of the proposed descriptor is experimentally analyzed using the Weizmann and KTH datasets. The average recognition rate for the Weizmann and KTH datasets is 100% and 99.89%, respectively. The computational time for the proposed descriptor learning is 0.003 seconds, which is an improvement of approximately 1.4% over the existing methods.

A Comparison Study on Back-Propagation Neural Network and Support Vector Machines for the Image Classification Problems (영상분류문제를 위한 역전파 신경망과 Support Vector Machines의 비교 연구)

  • Seo, Kwang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1889-1893
    • /
    • 2008
  • This paper explores the classification performance of applying to support vector machines (SVMs) for the image classification problems. In this study, we extract the color, texture and shape features of natural images and compare the performance of image classification using each individual feature and integrated features. The experiment results show that classification accuracy on the basis of color feature is better than that based on texture and shape features and the results of the integrating features also provides a better and more robust performance than individual feature. In additions, we show that the proposed classifier of SVM based approach outperforms BPNN to corporate the image classification problems.

Video Indexing using Motion vector and brightness features (움직임 벡터와 빛의 특징을 이용한 비디오 인덱스)

  • 이재현;조진선
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.4
    • /
    • pp.27-34
    • /
    • 1998
  • In this paper we present a method for automatic motion vector and brightness based video indexing and retrieval. We extract a representational frame from each shot and compute some motion vector and brightness based features. For each R-frame we compute the optical flow field; motion vector features are then derived from this flow field, BMA(block matching algorithm) is used to find motion vectors and Brightness features are related to the cut detection of method brightness histogram. A video database provided contents based access to video. This is achieved by organizing or indexing video data based on some set of features. In this paper the index of features is based on a B+ search tree. It consists of internal and leaf nodes stores in a direct access a storage device. This paper defines the problem of video indexing based on video data models.

  • PDF

Improving the Performance of SVM Text Categorization with Inter-document Similarities (문헌간 유사도를 이용한 SVM 분류기의 문헌분류성능 향상에 관한 연구)

  • Lee, Jae-Yun
    • Journal of the Korean Society for information Management
    • /
    • v.22 no.3 s.57
    • /
    • pp.261-287
    • /
    • 2005
  • The purpose of this paper is to explore the ways to improve the performance of SVM (Support Vector Machines) text classifier using inter-document similarities. SVMs are powerful machine learning systems, which are considered as the state-of-the-art technique for automatic document classification. In this paper text categorization via SVMs approach based on feature representation with document vectors is suggested. In this approach, document vectors instead of index terms are used as features, and vector similarities instead of term weights are used as feature values. Experiments show that SVM classifier with document vector features can improve the document classification performance. For the sake of run-time efficiency, two methods are developed: One is to select document vector features, and the other is to use category centroid vector features instead. Experiments on these two methods show that we can get improved performance with small vector feature set than the performance of conventional methods with index term features.

Satellite Image Classification Based on Color and Texture Feature Vectors (칼라 및 질감 속성 벡터를 이용한 위성영상의 분류)

  • 곽장호;김준철;이준환
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.183-194
    • /
    • 1999
  • The Brightness, color and texture included in a multispectral satellite data are used as important factors to analyze and to apply the image data for a proper use. One of the most significant process in the satellite data analysis using texture or color information is to extract features effectively expressing the information of original image. It was described in this paper that six features were introduced to extract useful features from the analysis of the satellite data, and also a classification network using the back-propagation neural network was constructed to evaluate the classification ability of each vector feature in SPOT imagery. The vector features were adopted from the training set selection for the interesting region, and applied to the classification process. The classification results showed that each vector feature contained many merits and demerits depending on each vector's characteristics, and each vector had compatible classification ability. Therefore, it is expected that the color and texture features are effectively used not only in the classification process of satellite imagery, but in various image classification and application fields.

Evaluating the Contribution of Spectral Features to Image Classification Using Class Separability

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.55-65
    • /
    • 2020
  • Image classification needs the spectral similarity comparison between spectral features of each pixel and the representative spectral features of each class. The spectral similarity is obtained by computing the spectral feature vector distance between the pixel and the class. Each spectral feature contributes differently in the image classification depending on the class separability of the spectral feature, which is computed using a suitable vector distance measure such as the Bhattacharyya distance. We propose a method to determine the weight value of each spectral feature in the computation of feature vector distance for the similarity measurement. The weight value is determined by the ratio between each feature separability value to the total separability values of all the spectral features. We created ten spectral features consisting of seven bands of Landsat-8 OLI image and three indices, NDVI, NDWI and NDBI. For three experimental test sites, we obtained the overall accuracies between 95.0% and 97.5% and the kappa coefficients between 90.43% and 94.47%.

An analysis of Speech Acts for Korean Using Support Vector Machines (지지벡터기계(Support Vector Machines)를 이용한 한국어 화행분석)

  • En Jongmin;Lee Songwook;Seo Jungyun
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.365-368
    • /
    • 2005
  • We propose a speech act analysis method for Korean dialogue using Support Vector Machines (SVM). We use a lexical form of a word, its part of speech (POS) tags, and bigrams of POS tags as sentence features and the contexts of the previous utterance as context features. We select informative features by Chi square statistics. After training SVM with the selected features, SVM classifiers determine the speech act of each utterance. In experiment, we acquired overall $90.54\%$ of accuracy with dialogue corpus for hotel reservation domain.

Construction of Composite Feature Vector Based on Discriminant Analysis for Face Recognition (얼굴인식을 위한 판별분석에 기반한 복합특징 벡터 구성 방법)

  • Choi, Sang-Il
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.834-842
    • /
    • 2015
  • We propose a method to construct composite feature vector based on discriminant analysis for face recognition. For this, we first extract the holistic- and local-features from whole face images and local images, which consist of the discriminant pixels, by using a discriminant feature extraction method. In order to utilize both advantages of holistic- and local-features, we evaluate the amount of the discriminative information in each feature and then construct a composite feature vector with only the features that contain a large amount of discriminative information. The experimental results for the FERET, CMU-PIE and Yale B databases show that the proposed composite feature vector has improvement of face recognition performance.

Fault Classification for Rotating Machinery Using Support Vector Machines with Optimal Features Corresponding to Each Fault Type (결함유형별 최적 특징과 Support Vector Machine 을 이용한 회전기계 결함 분류)

  • Kim, Yang-Seok;Lee, Do-Hwan;Kim, Seong-Kook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1681-1689
    • /
    • 2010
  • Several studies on the use of Support Vector Machines (SVMs) for diagnosing rotating machinery have been successfully carried out, but the fault classification depends on the input features as well as a multi-classification scheme, binary optimizer, kernel function, and the parameter to be used in the kernel function. Most of the published papers on multiclass SVM applications report the use of the same features to classify the faults. In this study, simple statistical features are determined on the basis of time domain vibration signals for various fault conditions, and the optimal features for each fault condition are selected. Then, the optimal features are used in the SVM training and in the classification of each fault condition. Simulation results using experimental data show that the results of the proposed stepwise classification approach with a relatively short training time are comparable to those for a single multi-class SVM.