International Journal of Computer Science & Network Security
/
v.21
no.2
/
pp.9-13
/
2021
Type 2 diabetes mellitus (T2D) is a complex diabetes disease that is caused by high blood sugar, insulin resistance, and a relative lack of insulin. Many studies are trying to predict variant genes that causes this disease by using a sample disease model. In this paper we predict diabetic and normal persons by using fisher score feature selection, chi-2 feature selection and Logistic Regression supervised learning algorithm with best accuracy of 90.23%.
본 논문은 SVM(Support Vector Machine) 학습알고리즘을 이용하여 자동차 썬루프 장치의 볼트 유무를 검사하는 자동차 부품 검사 장비에 관한 것이다. 자동화 시스템은 높은 정밀도와 생산성을 위한 빠른 처리 속도를 요구한다. 이를 위해 본 논문에서는 선형 SVM 학습알고리즘을 활용하여 자동차 썬루프 장치의 볼트 유무를 검사하는 알고리즘을 개발하였다. SVM 알고리즘은 분류를 위한 알고리즘이지만 ROI(Region-Of-Interest) 내의 모든 윈도우에 대한 분류를 수행하여 검출기 역할을 할 수 있도록 한다. 볼트가 있는 경우와 볼트가 없는 경우가 아닌 네거티브 샘플을 확보하기 위해 검출 대상 물체 주변에서 다양한 네거티브 샘플들을 추출한다. 그 결과 물체가 예상 위치에서 다소 빗나가는 경우에도 볼트 유무를 판별할 수 있을 뿐 아니라 볼트의 위치까지 검출할 수 있고, 처리 속도에서 자동화 시스템이 요구하는 수준에 도달함을 실험 결과를 통해 검증한다.
안드로이드 플랫폼은 타 모바일 플랫폼보다 보안에 있어서 더 많은 취약점을 안고 있다. 따라서 현재 발생하고 있는 대부분의 모바일 악성코드는 안드로이드 플랫폼에서 발생하고 있다. 현재 악성코드 탐지 기법 중 기계학습을 도입한 방법은 변종 악성코드의 대처에 유연하다. 하지만 기계학습기법은 불필요한 Feature를 학습데이터로 사용할 경우, 오버피팅이 발생하여 전체적인 성능을 저하시킬 수 있다. 본 논문에서는 안드로이드 플랫폼에서 발생하는 리소스를 모니터링하여 Feature vector를 생성하고, Feature-selection 알고리즘을 통하여 Feature의 수에 따라 기계학습 Classifier를 통한 악성코드 탐지의 성능지표를 보인다. 이를 통하여, 기계학습을 통한 악성코드 탐지에서 Feature-selection의 필요성과 중요성을 설명한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.2
/
pp.405-423
/
2022
The distance vector-hop (DV-Hop) is one of the emblematic algorithms that use node connectivity for locating, which often accompanies by a large positioning error. To reduce positioning error, the bio-inspired algorithm and weight optimization model are introduced to address positioning. Most scholars argue that the weight value decreases as the hop counts increases. However, this point of view ignores the intrinsic relationship between the error and weight. To address this issue, this paper constructs the relationship model between error and hop counts based on actual communication characteristics of sensor nodes in wireless sensor network. Additionally, we prove that the error converges to 1/6CR when the hop count increase and tendency to infinity. Finally, this paper presents a modified error-oriented weight positioning model, and implements it with genetic algorithm. The experimental results demonstrate excellent robustness and error removal.
International Journal of Computer Science & Network Security
/
v.22
no.8
/
pp.275-279
/
2022
The growth of technology nowadays has made many things easy for humans. These things are from everyday small task to more complex tasks. Such growth also comes with the illegal activities that are perform by using technology. These illegal activities can simple as displaying annoying message to big frauds. The easiest way for the attacker to perform such activities is to convenience user to click on the malicious link. It has been a great concern since a decay to classify URLs as malicious or benign. The blacklist has been used initially for that purpose and is it being used nowadays. It is efficient but has a drawback to update blacklist automatically. So, this method is replace by classification of URLs based on machine learning algorithms. In this paper we have use four machine learning classification algorithms to classify URLs as malicious or benign. These algorithms are support vector machine, random forest, n-nearest neighbor, and decision tree. The dataset that is used in this research has 36694 instances. A comparison of precision accuracy and recall values are shown for dataset with and without preprocessing.
MANET(Mobile Ad-hoc Network)에서는 노드들의 에너지가 제한적이기 때문에 에너지 효율적인 경로 설정이 중요한 이슈이다. 본 논문에서는 AOMDV(Ad-hoc On-demand Multipath Distance Vector)를 기반으로 노드의 에너지를 고려한 경로 설정과 유지 기법이 추가된 라우팅 프로토콜을 제안한다. 본 논문에서 제안한 다중경로 라우팅 프로토콜은 노드의 에너지 잔량을 고려하여 경로를 설정하기 때문에 에너지 고갈로 인한 경로 재설정 횟수를 줄일 수 있으며, 노드의 에너지 잔량 임계치를 설정하여 노드의 에너지 잔량이 임계치 이하가 되면 에러 패킷을 전송함으로서 경로 변경 및 재설정시 생기는 데이터의 손실과 전송지연을 줄일 수 있다.
In this paper, we study the following extended generalized variational inequality problem, introduced by Noor (for short, EGVI) : Given a closed convex subset K in q-uniformly smooth Banach space B, three nonlinear mappings T : $K\;{\rightarrow}\;B^*$, g : $K\;{\rightarrow}\;K$, h : $K\;{\rightarrow}\;K$ and a vector ${\xi}\;{\in}\;B^*$, find $x\;{\in}\;K$, $h(x)\;{\in}\;K$ such that $\xi$, g(y)-h(x)> $\geq$ 0, for all $y\;{\in}\;K$, $g(y)\;{\in}\;K$. [see [2]: M. Aslam Noor, Extended general variational inequalities, Appl. Math. Lett. 22 (2009) 182-186.] By using sunny nonexpansive retraction $Q_K$ and the well-known Banach's fixed point principle, we prove existence results for solutions of (EGVI). Our results extend some recent results from the literature.
최근 고령화 사회가 도래함에 따라 복지 사회 실현을 위해 의료기술에 IT 기술을 접목하여 인간의 건강을 효과적으로 유지하려는 요구가 증가하였다. 이러한 요구의 증가로 인해 원격으로 건강 상태를 검진하여 질병을 방지하거나 만성적인 환자의 건강상태를 장기적으로 관찰할 수 있는 IT 기술에 대한 연구가 활발하게 진행되고 있다. 본 연구에서는 누적된 인체 센서 데이터에 대한 분류화 기법을 제안하여 구현하고 성능을 검증하였다. 분류화 기법은 인체 센서 데이터에 잘 적용될 수 있는 지지벡터 기계를 활용하여 구현하였다. 인체 센서 데이터의 대표패턴 정의와 실험을 위한 잡음 생성을 통하여 분류화 정확도를 높일 수 있도록 실험을 설계하였고 다양한 설정 변수에서도 기법을 실험하여 빠르고 정확한 기법을 설계 및 구현하였다.
인간의 감성은 개인이 생활을 통하여 갖게 되는 자신의 기준에 의하여 동일한 외부자극에 대해서 다양하게 나타난다. 대부분 우리는 인간이 수행하는 각각의 행동들을 통해 문제 해결을 위한 감성의 변화와 생각, 사고의 절차 등을 인지할 수 있기 때문에 감성은 인간의 작업 능력과 정보 분석 및 해결 등의 문제들과 밀접하게 관계가 있다. 본 논문에서는 이미지의 내재 정보에서 특징점을 추출하고 추출한 특징점을 SVM 알고리즘을 이용하여 학습시킨 후 결과 클래스를 러셀 평면 좌표계에 맵핑함으로써 이미지의 감성 정보를 추출하는 연구를 진행하였다.
APU(Accelerated Processing Unit)는 CPU와 GPU가 통합되어있는 프로세서이며 같은 메모리 공간을 사용한다. CPU와 GPU가 분리되어있는 기존 이종 컴퓨팅 환경에서는 GPU가 작업을 처리하기 위해 CPU에서 GPU로 메모리 복사가 이루어졌지만, APU는 같은 메모리 공간을 사용하므로 메모리 복사 없이 가상주소 할당으로 같은 물리 주소에 접근할 수 있으며 이를 Zero Copy라 한다. Zero Copy 성능을 테스트하기 위해 희소행렬 연산을 사용하였으며 기존 메모리 복사대비 크기가 큰 데이터는 약 4.67배, 크기가 작은 데이터는 약 6.27배 빨랐다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.