• Title/Summary/Keyword: vector computer

Search Result 2,007, Processing Time 0.024 seconds

A Study on Improving Speech Recognition Rate (H/W, S/W) of Speech Impairment by Neurological Injury (신경학적 손상에 의한 언어장애인 음성 인식률 개선(H/W, S/W)에 관한 연구)

  • Lee, Hyung-keun;Kim, Soon-hub;Yang, Ki-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1397-1406
    • /
    • 2019
  • In everyday mobile phone calls between the disabled and non-disabled people due to neurological impairment, the communication accuracy is often hindered by combining the accuracy of pronunciation due to the neurological impairment and the pronunciation features of the disabled. In order to improve this problem, the limiting method is MEMS (micro electro mechanical systems), which includes an induction line that artificially corrects difficult vocalization according to the oral characteristics of the language impaired by improving the word of out of vocabulary. mechanical System) Microphone device improvement. S/W improvement is decision tree with invert function, and improved matrix-vector rnn method is proposed considering continuous word characteristics. Considering the characteristics of H/W and S/W, a similar dictionary was created, contributing to the improvement of speech intelligibility for smooth communication.

Leakage Detection Method in Water Pipe using Tree-based Boosting Algorithm (트리 기반 부스팅 알고리듬을 이용한 상수도관 누수 탐지 방법)

  • Jae-Heung Lee;Yunsung Oh;Junhyeok Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.17-23
    • /
    • 2024
  • Losses in domestic water supply due to leaks are very large, such as fractures and defects in pipelines. Therefore, preventive measures to prevent water leakage are necessary. We propose the development of a leakage detection sensor utilizing vibration sensors and present an optimal leakage detection algorithm leveraging artificial intelligence. Vibrational sound data acquired from water pipelines undergo a preprocessing stage using FFT (Fast Fourier Transform), followed by leakage classification using an optimized tree-based boosting algorithm. Applying this method to approximately 260,000 experimental data points from various real-world scenarios resulted in a 97% accuracy, a 4% improvement over existing SVM(Support Vector Machine) methods. The processing speed also increased approximately 80 times, confirming its suitability for edge device applications.

Using Keystroke Dynamics for Implicit Authentication on Smartphone

  • Do, Son;Hoang, Thang;Luong, Chuyen;Choi, Seungchan;Lee, Dokyeong;Bang, Kihyun;Choi, Deokjai
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.968-976
    • /
    • 2014
  • Authentication methods on smartphone are demanded to be implicit to users with minimum users' interaction. Existing authentication methods (e.g. PINs, passwords, visual patterns, etc.) are not effectively considering remembrance and privacy issues. Behavioral biometrics such as keystroke dynamics and gait biometrics can be acquired easily and implicitly by using integrated sensors on smartphone. We propose a biometric model involving keystroke dynamics for implicit authentication on smartphone. We first design a feature extraction method for keystroke dynamics. And then, we build a fusion model of keystroke dynamics and gait to improve the authentication performance of single behavioral biometric on smartphone. We operate the fusion at both feature extraction level and matching score level. Experiment using linear Support Vector Machines (SVM) classifier reveals that the best results are achieved with score fusion: a recognition rate approximately 97.86% under identification mode and an error rate approximately 1.11% under authentication mode.

A Multivariate Decision Tree using Support Vector Machines (지지 벡터 머신을 이용한 다변수 결정 트리)

  • Kang, Sung-Gu;Lee, B.W.;Na, Y.C.;Jo, H.S.;Yoon, C.M.;Yang, Ji-Hoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.278-283
    • /
    • 2006
  • 결정 트리는 큰 가설 공간을 가지고 있어 유연하고 강인한 성능을 지닐 수 있다. 하지만 결정트리가 학습 데이터에 지나치게 적응되는 경향이 있다. 학습데이터에 과도하게 적응되는 경향을 없애기 위해 몇몇 가지치기 알고리즘이 개발되었다. 하지만, 데이터가 속성 축에 평행하지 않아서 오는 공간 낭비의 문제는 이러한 방법으로 해결할 수 없다. 따라서 본 논문에서는 다변수 노드를 사용한 선형 분류기를 이용하여 이러한 문제점을 해결하는 방법을 제시하였으며, 결정트리의 성능을 높이고자 지지 벡터 머신을 도입하였다(SVMDT). 본 논문에서 제시한 알고리즘은 세 가지 부분으로 이루어졌다. 첫째로, 각 노드에서 사용할 속성을 선택하는 부분과 둘째로, ID3를 이 목적에 맞게 바꾼 알고리즘과 마지막으로 기본적인 형태의 가지치기 알고리즘을 개발하였다. UCI 데이터 셋을 이용하여 OC1, C4.5, SVM과 비교한 결과, SVMDT는 개선된 결과를 보였다.

  • PDF

Design and Implementation of a Integrated web Multimedia Contents Server and Client System (웹 멀티미디어 컨텐츠 서버/클라이언트 통합 시스템의 설계 및 구현)

  • Won, Duck-Jae;Kim, Se-Young;Noh, Kang-Rae;Shin, Yong-Tak;Shin, Dong-Kyoo;Shin, Dong-Il
    • Annual Conference of KIPS
    • /
    • 2001.04b
    • /
    • pp.611-614
    • /
    • 2001
  • 최근 인터넷 사용의 폭발적인 증가로 인하여 웹 상에서 유기적으로 통합된 멀티미디어 컨텐츠에 대한 서비스 제공의 필요성이 대두되었다. 이에 1998년 W3C(World Wide Web Consortium)는 통합 멀티미디어 표현 언어인 SMIL(Synchronized Multimedia Integration Language)을 발표하였고, SMIL-Boston으로 진행했던 SMIL 1.0 확장 프로젝트를 SVG(Scalable Vector Graphics)의 애니메이션 기능의 도입 및 기능 확장으로 2000년 9월 SMIL 2.0으로 최종 Working Draft안을 발표하게 되었다. 이에 본 논문에서는 SMIL컨텐츠 저작을 위한 자동 생성 모듈 및 전용 저작 도구를 제공하고, SMIL 컨텐츠 데이터베이스 서버 및 재생기와의 통합으로 원활한 SMIL 컨텐츠 서비스 환경을 제공하는 웹 멀티미디어 컨텐츠 서비스를 위한 서버/클라이언트 통합 시스템을 설계 및 구현하였다.

  • PDF

A Study on Mouth Features Detection in Face using HMM (HMM을 이용한 얼굴에서 입 특징점 검출에 관한 연구)

  • Kim, Hea-Chel;Jung, Chan-Ju;Kwag, Jong-Se;Kim, Mun-Hwan;Bae, Chul-Soo;Ra, Snag-Dong
    • Annual Conference of KIPS
    • /
    • 2002.04a
    • /
    • pp.647-650
    • /
    • 2002
  • The human faces do not have distinct features unlike other general objects. In general the features of eyes, nose and mouth which are first recognized when human being see the face are defined. These features have different characteristics depending on different human face. In this paper, We propose a face recognition algorithm using the hidden Markov model(HMM). In the preprocessing stage, we find edges of a face using the locally adaptive threshold scheme and extract features based on generic knowledge of a face, then construct a database with extracted features. In training stage, we generate HMM parameters for each person by using the forward-backward algorithm. In the recognition stage, we apply probability values calculated by the HMM to input data. Then the input face is recognized by the euclidean distance of face feature vector and the cross-correlation between the input image and the database image. Computer simulation shows that the proposed HMM algorithm gives higher recognition rate compared with conventional face recognition algorithms.

  • PDF

Competitive Influence Maximization on Online Social Networks under Cost Constraint

  • Chen, Bo-Lun;Sheng, Yi-Yun;Ji, Min;Liu, Ji-Wei;Yu, Yong-Tao;Zhang, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1263-1274
    • /
    • 2021
  • In online competitive social networks, each user can be influenced by different competing influencers and consequently chooses different products. But their interest may change over time and may have swings between different products. The existing influence spreading models seldom take into account the time-related shifts. This paper proposes a minimum cost influence maximization algorithm based on the competitive transition probability. In the model, we set a one-dimensional vector for each node to record the probability that the node chooses each different competing influencer. In the process of propagation, the influence maximization on Competitive Linear Threshold (IMCLT) spreading model is proposed. This model does not determine by which competing influencer the node is activated, but sets different weights for all competing influencers. In the process of spreading, we select the seed nodes according to the cost function of each node, and evaluate the final influence based on the competitive transition probability. Experiments on different datasets show that the proposed minimum cost competitive influence maximization algorithm based on IMCLT spreading model has excellent performance compared with other methods, and the computational performance of the method is also reasonable.

Analysis of LinkedIn Jobs for Finding High Demand Job Trends Using Text Processing Techniques

  • Kazi, Abdul Karim;Farooq, Muhammad Umer;Fatima, Zainab;Hina, Saman;Abid, Hasan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.223-229
    • /
    • 2022
  • LinkedIn is one of the most job hunting and career-growing applications in the world. There are a lot of opportunities and jobs available on LinkedIn. According to statistics, LinkedIn has 738M+ members. 14M+ open jobs on LinkedIn and 55M+ Companies listed on this mega-connected application. A lot of vacancies are available daily. LinkedIn data has been used for the research work carried out in this paper. This in turn can significantly tackle the challenges faced by LinkedIn and other job posting applications to improve the levels of jobs available in the industry. This research introduces Text Processing in natural language processing on datasets of LinkedIn which aims to find out the jobs that appear most in a month or/and year. Therefore, the large data became renewed into the required or needful source. This study thus uses Multinomial Naïve Bayes and Linear Support Vector Machine learning algorithms for text classification and developed a trained multilingual dataset. The results indicate the most needed job vacancies in any field. This will help students, job seekers, and entrepreneurs with their career decisions

Emotion Recognition in Arabic Speech from Saudi Dialect Corpus Using Machine Learning and Deep Learning Algorithms

  • Hanaa Alamri;Hanan S. Alshanbari
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.9-16
    • /
    • 2023
  • Speech can actively elicit feelings and attitudes by using words. It is important for researchers to identify the emotional content contained in speech signals as well as the sort of emotion that resulted from the speech that was made. In this study, we studied the emotion recognition system using a database in Arabic, especially in the Saudi dialect, the database is from a YouTube channel called Telfaz11, The four emotions that were examined were anger, happiness, sadness, and neutral. In our experiments, we extracted features from audio signals, such as Mel Frequency Cepstral Coefficient (MFCC) and Zero-Crossing Rate (ZCR), then we classified emotions using many classification algorithms such as machine learning algorithms (Support Vector Machine (SVM) and K-Nearest Neighbor (KNN)) and deep learning algorithms such as (Convolution Neural Network (CNN) and Long Short-Term Memory (LSTM)). Our Experiments showed that the MFCC feature extraction method and CNN model obtained the best accuracy result with 95%, proving the effectiveness of this classification system in recognizing Arabic spoken emotions.

Traffic Accident Detection Using Bird's-Eye View and Vehicle Motion Vector (조감도 및 차량 움직임 벡터를 이용한 교통사고 검출)

  • Son, Hyeon-Cheol;Si, Jong-Wook;Kim, Da-Seul;Lee, Yong-Hwan;Kim, Sung-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.71-72
    • /
    • 2020
  • 본 논문에서는 자동차 블랙박스를 사용하여 촬영된 비디오에서 자동차 사고 발생 여부를 판단하는 방법을 제안한다. 제안한 방법은 우선 객체 추적 과정에서 구한 조감도 좌표를 사용하여 각 차량 사이의 거리에 기반을 두고 교통사고 여부를 판단한다. 그런데 거리만을 사용하여 사고 여부를 판단하는 경우 자동차가 밀집된 주·정차 환경에서는 오검출의 확률이 높아질 수 있다. 이를 위해 각 차량에 대한 움직임 벡터를 계산하고 벡터 간의 정보(사잇각과 크기 등)를 사용하여 차량의 주·정차 여부를 판단한 후 사고 검출 대상에서 배제할 수 있도록 한다. 주·정차 판단 여부를 통해 사고 검출의 정확도를 향상할 수 있는 것을 실험적으로 확인하였다.

  • PDF