• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.026 seconds

A Learning-based Visual Inspection System for Part Verification in a Panorama Sunroof Assembly Line using the SVM Algorithm (SVM 학습 알고리즘을 이용한 자동차 썬루프의 부품 유무 비전검사 시스템)

  • Kim, Giseok;Lee, Saac;Cho, Jae-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1099-1104
    • /
    • 2013
  • This paper presents a learning-based visual inspection method that addresses the need for an improved adaptability of a visual inspection system for parts verification in panorama sunroof assembly lines. It is essential to ensure that the many parts required (bolts and nuts, etc.) are properly installed in the PLC sunroof manufacturing process. Instead of human inspectors, a visual inspection system can automatically perform parts verification tasks to assure that parts are properly installed while rejecting any that are improperly assembled. The proposed visual inspection method is able to adapt to changing inspection tasks and environmental conditions through an efficient learning process. The proposed system consists of two major modules: learning mode and test mode. The SVM (Support Vector Machine) learning algorithm is employed to implement part learning and verification. The proposed method is very robust for changing environmental conditions, and various experimental results show the effectiveness of the proposed method.

Rendering of Sweep Surfaces using Programmable Graphics Hardware (그래픽스 하드웨어를 이용한 스윕 곡면의 렌더링)

  • Ko, Dae-Hyun;Yoon, Seung-Hyun;Lee, Ji-Eun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.4
    • /
    • pp.11-16
    • /
    • 2010
  • We present an efficient algorithm for rendering sweep surfaces using programmable graphics hardware. A sweep surface can be represented by a cross-section curve undergoing a spline motion. This representation has a simple matrix-vector multiplication structure that can easily be adapted to programmable graphics hardware. The data for the motion and cross-section curves are stored in texture memory. The vertex processor considers a pair of surface parameters as a vertex and evaluates its coordinates and normal vector with a single matrix multiplication. Using the GPU in this way is between 10 and 40 times as fast as CPU-based rendering.

Fault Detection and Diagnosis of Winding Short in BLDC Motors Based on Fuzzy Similarity

  • Bae, Hyeon;Kim, Sung-Shin;Vachtsevanos, George
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.2
    • /
    • pp.99-104
    • /
    • 2009
  • The turn-to-turn short is one major fault of the motor faults of BLDC motors and can appear frequently. When the fault happens, the motor can be operated without breakdown, but it is necessary to maintain the motor for continuous working. In past research, several methods have been applied to detect winding faults. The representative approaches have been focusing on current signals, which can give important information to extract features and to detect faults. In this study, current sensors were installed to measure signals for fault detection of BLDC motors. In this study, the Park's vector method was used to extract the features and to isolate the faults from the current measured by sensors. Because this method can consider the three-phase current values, it is useful to detect features from one-phase and three-phase faults. After extracting two-dimensional features, the final feature was generated by using the two-dimensional values using the distance equation. The values were used in fuzzy similarity to isolate the faults. Fuzzy similarity is an available tool to diagnose the fault without model generation and the fault was converted to the percentage value that can be considered as possibility of the fault.

Cyber Character Implementation with Recognition and Synthesis of Speech/lmage (음성/영상의 인식 및 합성 기능을 갖는 가상캐릭터 구현)

  • Choe, Gwang-Pyo;Lee, Du-Seong;Hong, Gwang-Seok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.5
    • /
    • pp.54-63
    • /
    • 2000
  • In this paper, we implemented cyber character that can do speech recognition, speech synthesis, Motion tracking and 3D animation. For speech recognition, we used Discrete-HMM algorithm with K-means 128 level vector quantization and MFCC feature vector. For speech synthesis, we used demi-syllables TD-PSOLA algorithm. For PC based Motion tracking, we present Fast Optical Flow like Method. And for animating 3D model, we used vertex interpolation with DirectSD retained mode. Finally, we implemented cyber character integrated above systems, which game calculating by the multiplication table with user and the cyber character always look at user using of Motion tracking system.

  • PDF

A Question Type Classifier Using a Support Vector Machine (지지 벡터 기계를 이용한 질의 유형 분류기)

  • An, Young-Hun;Kim, Hark-Soo;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.129-136
    • /
    • 2002
  • 고성능의 질의응답 시스템을 구현하기 위해서는 사용자의 질의 유형의 난이도에 관계없이 의도를 파악할 수 있는 질의유형 분류기가 필요하다. 본 논문에서는 문서 범주화 기법을 이용한 질의 유형 분류기를 제안한다. 본 논문에서 제안하는 질의 유형 분류기의 분류 과정은 다음과 같다. 우선, 사용자 질의에 포함된 어휘, 품사, 의미표지와 같은 다양한 정보를 이용하여 사용자 질의로부터 자질들을 추출한다. 이 과정에서 질의의 구문 특성을 반영하기 위해서 슬라이딩 윈도 기법을 이용한다. 또한, 다량의 자질들 중에서 유용한 것들만을 선택하기 위해서 카이 제곱 통계량을 이용한다. 추출된 자질들은 벡터 공간 모델로 표현되고, 문서 범주화 기법 중 하나인 지지 벡터 기계(support vector machine, SVM)는 이 정보들을 이용하여 질의 유형을 분류한다. 본 논문에서 제안하는 시스템은 질의 유형 분류 문제에지지 벡터 기계를 이용한 자동문서 범주화 기법을 도입하여 86.4%의 높은 분류 정확도를 보였다. 또한 질의 유형 분류기를 통계적 방법으로 구축함으로써 lexico-syntactic 패턴과 같은 규칙을 기술하는 수작업을 배제할 수 있으며, 응용 영역의 변화에 대해서도 안정적인 처리와 빠른 이식성을 보장한다.

  • PDF

On the Heterogeneous Postal Delivery Model for Multicasting

  • Sekharan, Chandra N.;Banik, Shankar M.;Radhakrishnan, Sridhar
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.536-543
    • /
    • 2011
  • The heterogeneous postal delivery model assumes that each intermediate node in the multicasting tree incurs a constant switching time for each message that is sent. We have proposed a new model where we assume a more generalized switching time at intermediate nodes. In our model, a child node v of a parent u has a switching delay vector, where the ith element of the vector indicates the switching delay incurred by u for sending the message to v after sending the message to i-1 other children of u. Given a multicast tree and switching delay vectors at each non-root node 5 in the tree, we provide an O(n$^{\frac{5}{2}}$) optimal algorithm that will decide the order in which the internal (non-leaf) nodes have to send the multicast message to its children in order to minimize the maximum end-to-end delay due to multicasting. We also show an important lower bound result that optimal multicast switching delay problem is as hard as min-max matching problem on weighted bipartite graphs and hence O(n$^{\frac{5}{2}}$) running time is tight.

A Multi-Stage Approach to Secure Digital Image Search over Public Cloud using Speeded-Up Robust Features (SURF) Algorithm

  • AL-Omari, Ahmad H.;Otair, Mohammed A.;Alzwahreh, Bayan N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.65-74
    • /
    • 2021
  • Digital image processing and retrieving have increasingly become very popular on the Internet and getting more attention from various multimedia fields. That results in additional privacy requirements placed on efficient image matching techniques in various applications. Hence, several searching methods have been developed when confidential images are used in image matching between pairs of security agencies, most of these search methods either limited by its cost or precision. This study proposes a secure and efficient method that preserves image privacy and confidentially between two communicating parties. To retrieve an image, feature vector is extracted from the given query image, and then the similarities with the stored database images features vector are calculated to retrieve the matched images based on an indexing scheme and matching strategy. We used a secure content-based image retrieval features detector algorithm called Speeded-Up Robust Features (SURF) algorithm over public cloud to extract the features and the Honey Encryption algorithm. The purpose of using the encrypted images database is to provide an accurate searching through encrypted documents without needing decryption. Progress in this area helps protect the privacy of sensitive data stored on the cloud. The experimental results (conducted on a well-known image-set) show that the performance of the proposed methodology achieved a noticeable enhancement level in terms of precision, recall, F-Measure, and execution time.

Gravity Removal and Vector Rotation Algorithm for Step counting using a 3-axis MEMS accelerometer (3축 MEMS 가속도 센서를 이용한 걸음 수 측정을 위한 중력 제거 및 백터 전환 알고리즘)

  • Kim, Seung-Young;Kwon, Gu-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.43-52
    • /
    • 2014
  • In this paper, we propose Gravity Removal and Vector Rotation algorithm for counting steps of wearable device, and we evaluated the proposed GRVR algorithm with Micro-Electro-Mechanical (MEMS) 3-axis accelerometer equipped in low-power wearable device while the device is mounted on various positions of a walking or running person. By applying low-pass filter, the gravity elements are canceled from acceleration on each axis of yaw, pitch and roll. In addition to DC-bias removal and the low-pass filtering, the proposed GRVR calculates acceleration only on the yaw-axis while a person is walking or running thus we count the step even if the wearable device's axis are rotated during walking or running. The experimental result shows 99.4% accuracies for the cases where the wearable device is mounted in the middle and on the right of the belt, and 91.1% accuracy which is more accurate than 83% of commercial 3-axis pedometer when worn on wrist for the case of axis-rotation.

Object Detection Using Deep Learning Algorithm CNN

  • S. Sumahasan;Udaya Kumar Addanki;Navya Irlapati;Amulya Jonnala
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.129-134
    • /
    • 2024
  • Object Detection is an emerging technology in the field of Computer Vision and Image Processing that deals with detecting objects of a particular class in digital images. It has considered being one of the complicated and challenging tasks in computer vision. Earlier several machine learning-based approaches like SIFT (Scale-invariant feature transform) and HOG (Histogram of oriented gradients) are widely used to classify objects in an image. These approaches use the Support vector machine for classification. The biggest challenges with these approaches are that they are computationally intensive for use in real-time applications, and these methods do not work well with massive datasets. To overcome these challenges, we implemented a Deep Learning based approach Convolutional Neural Network (CNN) in this paper. The Proposed approach provides accurate results in detecting objects in an image by the area of object highlighted in a Bounding Box along with its accuracy.

Hyperspectral Image Classification via Joint Sparse representation of Multi-layer Superpixles

  • Sima, Haifeng;Mi, Aizhong;Han, Xue;Du, Shouheng;Wang, Zhiheng;Wang, Jianfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5015-5038
    • /
    • 2018
  • In this paper, a novel spectral-spatial joint sparse representation algorithm for hyperspectral image classification is proposed based on multi-layer superpixels in various scales. Superpixels of various scales can provide complete yet redundant correlated information of the class attribute for test pixels. Therefore, we design a joint sparse model for a test pixel by sampling similar pixels from its corresponding superpixels combinations. Firstly, multi-layer superpixels are extracted on the false color image of the HSI data by principal components analysis model. Secondly, a group of discriminative sampling pixels are exploited as reconstruction matrix of test pixel which can be jointly represented by the structured dictionary and recovered sparse coefficients. Thirdly, the orthogonal matching pursuit strategy is employed for estimating sparse vector for the test pixel. In each iteration, the approximation can be computed from the dictionary and corresponding sparse vector. Finally, the class label of test pixel can be directly determined with minimum reconstruction error between the reconstruction matrix and its approximation. The advantages of this algorithm lie in the development of complete neighborhood and homogeneous pixels to share a common sparsity pattern, and it is able to achieve more flexible joint sparse coding of spectral-spatial information. Experimental results on three real hyperspectral datasets show that the proposed joint sparse model can achieve better performance than a series of excellent sparse classification methods and superpixels-based classification methods.