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On the Heterogeneous Postal Delivery Model for
Multicasting

Chandra N. Sekharan, Shankar M. Banik, and Sridhar 'Radhakrishnan

Abstract: The heterogeneous postal delivery model assumes that
each intermediate node in the multicasting tree incurs a constant
switching time for each message that is sent. We have proposed a
new model where we assume a more generalized switching time at
intermediate nodes. In our model, a child node v of a parent u has
a switching delay vector, where the ith element of the vector in-
dicates the switching delay incurred by u for sending the message
to v after sending the message to . — 1 other children of u. Given
a multicast tree and switching delay vectors at each non-root node
in the tree, we provide an O(n7 ) optimal algorithm that will de-
cide the order in which the internal (non-leaf) nodes have to send
the multicast message to its children in order to minimize the max-
imum end-to-end delay due to multicasting, We also show an im-
portant lower bound result that optimal multicast switching delay
problem is as hard as min-max matching problem on weighted bi-
partite graphs and hence O(n% ) running time is tight.

Index Terms: Min-max matching, multicasting, postal delivery
model, weighted bipartite graphs.

1. INTRODUCTION

Multicasting is an efficient communication mechanism in
which a source host sends the same message to a group of desti-
nation hosts, called the multicasting group. The general strategy
of accomplishing this task is to construct a rooted tree 7" called
the multicast tree [1]-[3] that contains the source as the root and
the destination hosts as the leaf nodes. A single source shortest
path tree can be used as a multicast tree. The primary advan-
tage of using the multicast is that it conserves network band-
width. Contrasted with the unicast mechanism where separate
messages are sent to each destination host from the source host,
multicasting avoids sending the same message multiply over
links that are common to a source and different destinations. As
fewer number of messages are transmitted in multicasting, the
network gets less congested. Due to limited network layer sup-
port for multicasting in the current Internet, the recent research
trend is to implement multicast service in the application layer
which is referred as overlay multicast [4]-[8]. An overlay net-
work is a virtual network deployed over an existing network. In
an overlay network, each individual link which connects two
nodes can comprise of several routers and hosts in the underly-
ing physical network.
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The problem of designing an efficient multicast tree for a
given graph with different parameters has been addressed in the
literature. Collaborative application such as video-conferencing,
online games, and distributed database replication require that
each destination should receive the message from a source
within a specified delay bound. These applications also require
that each destination should receive message from the source at
approximately the same time. Given a graph with non-negative
delay for each edge, an end-to-end delay bound and a delay vari-
ation bound, delay and delay variation bounded multicasting
network (DVBMN) problem is defined as finding a multicast
tree which satisfies the end-to-end delay bound and the delay
variation bound. DVBMN problem is non deterministic polyno-
mial (NP)-complete [9] and heuristics have been proposed by
Rouskas er. al. [9], Kapoor et. al, [10], and Sheu et. 4l [11] for
this problem. In our prior work [12] on multicasting, we have
proposed the most efficient heuristic for the DVBMN problem.

Given a graph where each edge has a non-negative delay and
a non-negative cost, Zhu et. a/ [13] have proposed a heuristic
for constructing a minimum-cost multicast tree that satisfies the
end-to-end delay constraint. Lee et. al [14] have considered de-
lay variation and cost and proposed a scalable heuristic for de-
signing a minimum cost multicast tree that satisfies the delay
variation constraint. Bang et. al [15] have proposed a heuristic
for constructing a multicast tree to transmit a given message of
a fixed size from a source to a set of destinations which mini-
mizes the end-to-end delay. Degree constrained multicasting is
required for point-to-point networks of switching nodes where
a switching node’s copying ability is constrained and Bauer
et. al [16] have proposed a heuristic for designing a degree con-
strained multicast tree.

Two basic communication models are used to characterize
multicast operation on a network. In the first model, known as
telephone model, a node may send a message to at most one
other node in each round. In this model, both the sender and the
receiver are busy during the whole sending process. The second
model which is a realistic model is known as postal model. In
the postal model, a sender may send another message before
the current message is completely received by the receiver. Bar-
Noy et. al [17] first introduced the heterogeneous postal delay
model in the context of network multicasting. In their model,
they consider link delays and switching time delay at each node,
and further assume that the time interval between two succes-
sive message sends is equal to the switching time. Assume node
u has two children 71 and vs and switching time at node u is
s, Node u sends message to vy at time £ = 0 and the message
arrives at vy attime £ = Ay, , where Ay, is the delay of the link
(u,v1). Now, u can send a message to vz at time t’ = s,,. The
message arrives at vg at time g = 8, + Ayy,, Where Ay, is the
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delay of the link (u, vo). In this model, the authors assumed that
S, is smaller than A, and A, . Brosh er. al [18] modified the
heterogeneous postal model and proposed the generalized het-
erogeneous postal (GHP) model where ¢4 = s,, + Ay, and 5 =
28y + Auy,- Given a graph G = (V| E), a multicasting group
M C V, asource node s € V, a non-negative switching time
s; for each node 7 € V, and a non-negative communication de-
lay d. for each edge e € F, minimum delay multicast (MDM)
problem is defined as finding a multicast scheme that minimizes
the delay required for sending a message from s to all the nodes
in M. As MDM problem is NP-complete [18], both Bar-Noy et.
al [17] and Brosh et. al [18] have provided approximation algo-
rithms for MDM problem.

Given a multicast tree with link delays and switching delay
vectors, where all the elements in a switching delay vector are
equal, Brosh [19] has provided a polynomial time algorithm us-
ing a recursive bottom-up computation to determine the ordering
at each non-leaf node such that the delay of the multicast tree is
minimum. In this paper, we propose a model where node u has
different switching time for each child node v and the message
arrival time at each child v depends on the order in which u
chooses to send the messages. This model captures the hetero-
geneous nature of communication links and node hardware on
the overlay network. Given a multicast tree with link delays and
generalized switching delay vectors, the goal of this paper is to
determine the order in which the data packets have to be sent to
each of the children in the multicast tree in such a way that the
maximum end-to-end delay of the multicast tree is minimum.

We will illustrate the concept of switching delays of our
model using a virtual network containing hosts as nodes and two
hosts are connected by a virtual link which is a multi-hop Inter-
net connection. The hosts communicate using socket level pro-
grams using may be a connectionless protocol such as user data-
gram protocol (UDP). Now, let us assume a multicast tree T" on
the overlay network with S as the root of the tree. Also, assume
that ¢1, ¢y, and c3 are the children of S. Every node in the tree
will use sendTo and recvFrom socket utilities to send the packet
that originated from .S to its children in the tree and to receive
the packet sent by its parent in the tree, respectively. Node S will
execute sendTo three times, once for each of its children in the
tree. Note that each of the send places the same size data on to
the kernel buffer. Now, we have three copies of the same packet
in the kernel send buffer and the UDP takes the segment (con-
taining one data packet obtained as a result of the execution of
sendTo function) and adds its header which is then passed to In-
ternet protocol (IP) layer. The IP layer adds its header and places
the packets in the data link layer queue. The frames in the queue
(corresponding to each IP packet) are sent sequentially using
both the logical link control protocol and the medium access
control protocol. The medium access control layer transmits to
the nearest router designated for the given host by gaining exclu-
sive access to the channel and transmitting the frame. The delay
experienced by the data link layer in sending a single frame is
proportional to the channel access time. The child node that re-
ceives information as a result of the second sendTo experiences
additional delay due to the fact that the frames corresponding
to the first sendTo have to be completed before its frame can
be sent. Based on the discussion of the delays above, it is ev-
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Fig. 1. Multicast tree with link delays and switching delay vectors at each
node.

ident that the order in which the source S will issue the send
to its children will decide when the children ¢1, ¢, and c3 will
receive the packet from S. Let S send to the children in the fol-
lowing order, first to ¢y, then to ¢z, and finally to c3. Let us
assume that since S issues the sendto c; first, the additional de-
lay experienced by it is O units. Let ¢y experience an additional
delay of 3 units and c3 experience of 5 units due to the fact that
S sent the data packet using the second and third sendTo func-
tion statement executions at S, respectively. Generalizing this,
we will define a delay vector for a child node ¢; with two other
siblings to be < ¢}, 2, ¢} >, where ¢} is the additional delay
experienced when S sends the data packet to ¢; using the ith
sendTo statement, Different switching times for different chil-
dren induces the notion of ordering at the sending node and the
delay of a multicasting scheme depends on the ordering at each
sending node. We illustrate the scenario with an example.

Fig. 1 shows a multicast tree with root node ‘a’ and the
switching delay vectors at each node. The values on the links
are the link delays. The leaf nodes of the tree are the nodes in
the destination. If we consider only the link delays, the delay of
this multicast tree is 110 as it is the maximum of the delays of
all the pathsa ~ e, a~ f, a ~ g, and a ~ h. Now, the ordering of
packet sends at each non-leaf node will cause additional delay
in multicasting as shown in the switching delay vectors at each
node. As seen in Fig. 1, when ‘a’ is sending packets to ‘b’, ‘c’,
and ‘d’ in the order of ‘b, ¢, d’ nodes ‘¢’, and ‘d’ will incur ad-
ditional delay due to processing of packet for ‘b’ before them.
The switching delay vector at node ‘b’ with respect to node ‘a’
in Fig. 1 is <0, 2, 3> means that if ‘a’ sends packet first to ‘b’,
the switching delay at ‘b’ is 0. If ‘a’ sends packet second to ‘b’,
the switching delay at ‘b’ is 2 and if "a’ sends the packet third
to ‘b’, the switching delay at ‘b’ is 3. If the orderings of packet
sends at nodes ‘a’ and ‘¢’ are ‘b, ¢, d’ and ‘f, g,’ respectively,
the delay of the multicast tree becomes 116 (this is the delay of
path a ~ g which is 40 + 4 + 60 + 12 = 116).

Given a multicasting tree T' = (V, E), a non-negative delay
d. for each edge e € F, and switching delay vector for each
non-root node x as < s1, 8, + -, 8 > where k is the number of
siblings of x, we provide a polynomial time algorithm that de-
termines the order in which data packets need to be sent to each
node in the multicasting tree so that the delay of the multicast
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tree is minimum.

Our paper is organized as follows. In Section II, we formal-
ize our problem definition and provide tools that enable us to
build the optimal algorithm. The algorithm and its complexity
is presented in Section II1. Section I'V presents our lower bound
results. Conclusions are presented in Section V.

II. FORMAL DEFINITION OF THE PROBLEM
A. Problem Definitions

We define a vector 1" as an ordered collection of elements,
namely, < wvi,v9, -+ ,v; >. For vector T, we define a bi-
Jective mapping function o: {v1,vs, -, vg }— {1,2,-- -k} such
that o (v;) =4, 1< j < k. Let C=C;, 1€ 1 < k, bea
collection of vectors each having the same cardinality k. This
implies that each C; would look like C; = < v}, v}, v} >,
1< ¢ < k. A feasible vector of representatives of (' is a vector
<< v1,v2, -+, U > such thatv; € Oy, and o(v;) 5 o{v;), 1 # j,
1<i,7 <k
Example: Let Cy = <0,2, 1>, Oy = <2,0, 3>, and (5 = <1,
2, 3>. A feasible vector of representatives for the collection of
sets {Cy, Cy, Cy}is <2, 3, 1>, whereas <2, 0, 1> is not. The
following observations are easy to derive.

Proposition 1: Given a collection C = {C;}, 1< i < £k, of
vectors, a feasible vector of representatives of C' always exists.
Propesition 2: Given a collection C = {C}}, 1< i < k, of vec-
tors, there exists k! possible feasible vectors of representatives.
Let 3(C') denote the collection of all possible feasible vectors of
representatives.

We will denote the set of non-negative real numbers by the
notation ™. The cartesian product of the set of non-negative
real numbers k times will be denoted by R, i.e., R = R+ x
RF x - xRT(k times). Let T = (V, E) be a tree with root r that
represents the multicasting network of nodes. Let Sib(v) denote
the number of siblings of a node v of T', including itself. Triv-
ially, Sib(r) = 1, for the root node. We can model the problem of
muliticasting as follows based on assigning labels or weights to
edges of the multicast tree. For each node v # r, there is a vec-
tor called the switching delay vector D(v) = < ty,to, -, g >,
where £ = Sib(vyand 1< ¢ < kand ¢, € RT. The ;’s are called
switching time delays. We know that ¢; = 0 for all non-root
nodes in the tree. However, this fact is not material to the algo-
rithm discussed here. Given a non-leaf node v, let vy, va, - - -, Vg
be the children of v. Let us denote the edge set {(v, v1), (v,
v2), (U, vr)} by E(v). We define a feasible switching de-
lay vector for the edge set K(v) as P, : E(v) — %z such that
P, =< p1,p2,- ok > € S({D(vy): 1< @ < k }), where
vy, ve, -+, Uk are the children of v. A feasible switching delay
vector P, induces a natural labeling function f,: E(v)— RT,
where f(v, v;) = p;, 1 < 4 < k. Intuitively, a feasible switch-
ing delay vector assigns a label or a weight p; to each edge (v,
v;) where < pi,pg, -+, P > is a feasible vector of representa-
tives for the collection { D(v;)}, 1< 7 < k. We call the functions
fu. feasible switching delay functions. Given a multicast tree T’
rooted at v and delay vectors D(v) for each non-root node v,
we can extend the feasible switching delay functions f, to the
whole tree T as follows: A feasible multicast tree assignment
fr: BE(T) — R* such that fr(u, v) = fu(u, v), where {u, v)€
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F. Essentially, a feasible multicast tree assignment assigns a la-
bel or a weight to each edge of the tree so that the collection of
weights on an edge set £2(v) forms a switching delay vector.

We consider a network represented by a graph G = (V, E)
with n nodes and m links, where V" and F are a set of nodes and
a set of links, respectively. Each link e(i, 7)€ E is associated
with delay d(e) > 0. Consider a simple directed path (simply
referred as a path) P from iy to i; (denoted ig ~ i) given by
(ig, 1), (i1, %2)s - -, (ik—1, ix), Where (iy, ij41) € E, for j =0,
1, -+, k-1, and all iy, 4y, 9, - - -, 1y are distinct. The path-delay
of P is given by d(P) = Z’;:é d(e;) where e; = (ij, 1;41). Let
S be a node in the network, called the source node, and D = d;,
do, -+, di, where k < n-1 be the set of destination nodes. The
tree-delay of a multicast tree T that spans 5 and D is given by
d(T) = max {d(P)}orall 1 < i < k, where P; is path from
St d; € D intree T. The objective of multicasting algorithms
known in the literature is to construct the tree 7 that has the
minimum d(T).

Given a leaf node v in T, we know that there exists a unique
path P = (vy =7, vy, - v = v) from root node r to v. Let fp
be a feasible multicast tree assignment. We define a path delay
PDw)as PD(v) = Zf:o fr(v;, vie1). Given fp, we denote the
maximum delay of f7 by PDy.(fr)=max { PD(v): vis aleaf
node of T'}. We define an optimal multicast tree assignment as a
feasible multicast tree assignment f2FT such that P Dy (F2FT)
= min{ P Dy.(fr): For all feasible multicast tree assignments
frfor T} We will call P Dy ( f?PT) or simply P Dopr(T), the
optimal multicasting switching delay for T'. The problem is to
compute both f2°T and PDopr(7) in an efficient manner. To
solve this problem, we consider the min-max matching problem
on a graph and establish a relationship.

1. OUR SOLUTION
A. Min-Max Matching Problem on Weighted, Bipartite Graphs

Let G =(X, Y, E) be a weighted, complete bipartite graph

where X and Y are the vertex set partitions and E the edge
set of G, Furthermore, let us assume that | X| = ||, and that
the weights are from R*. A perfect matching for G is a set of
edges M of GG such that no two edges of M are incident on
a common vertex of G and M has maximum cardinality with
this property. For G, trivially, a perfect matching having | X|
edges exists. The problems of computing a matching of maxi-
mum cardinality and a perfect matching are well studied in the
literature [22]. We define heavy weight of a perfect matching A
for G as h(M) = max {weight of edge e: e € M }. A min-max
matching of G is a perfect matching IV of GG such that h(N)
= min {M{M): M is a perfect matching of GG}. The problem
of min-max matching and its dual the max-min matching are
problems of independent interest and arise in many scheduling
applications. The following lemmas address the complexity of
computing a min-max matching for a complete, weighted bipar-
tite graph G.
Lemma 1: The sequential time-complexity for obtaining a min-
max matching of a weighted, complete bipartite graph is the
same as finding the maximum cardinality matching of a bipartite
graph [20], [21].
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Composition
operation

Fig. 2.

Hook-up fan.

Lemma 2: Given a complete, weighted bipartite graph, a max-
imum weighted matching can be determined in O(m+/n) time
[22].

The above result of [22] was improved by [23] in 1995 to

O(flass), where k(z,y) = log z/ log - .

B. A Special Case of the Multicast Tree Problem

Let us consider a degenerate case fan of the multicast tree. A
fan T' = (V, E) is a multicast tree with k + 1 nodes, where k of
the (k + 1) nodes are leaves attached directly to the root node.
To be more descriptive, let us also say that the leaf nodes are v,
v, - vy, attached to the root 7. Let D; = < #4, ¢4, -+ 1 >, 1<
i < k, be the switching delay vector for node v;. We construct
a weighted, complete bipartite graph G = (X, Y, E) from T as
follows. We let X ={vy, vo,---, v}, Y ={1,2, -, k}, and the
edgeset E = {(v; , j): 1< j <k, 1< i < k}. In other words,
each vertex of X is connected to all of the vertices of Y. The
weight of an edge e = (v;, j) € E is given by w((v; ,j)) = t}, 1
<i,j <k

It is fairly straightforward to see that a feasible switching
delay vector of 1" is a vectorized representation of the set of
weights in a weighted, perfect matching M of G where the
ordering is from 1 through k. Secondly, because T is a fan,
fr(T) is the same as f, where 7 is the root node of 7" and
for all multicast tree assignments of fr. Thirdly, the path delay
PD(v;) = fr(r, v;) for each leaf node v;. Hence given a multi-
cast tree assignment fr, the maximum delay P D, (f7) is the
heavy weight of the corresponding weighted, perfect matching
on G. In the same vein, it is easy to see that an optimal multi-
cast tree assignment for 7" can be obtained by finding a min-max
matching for the transformed graph G. Finally, the construction
of G from T can be done in time O(n?), where n is the num-
ber of nodes in the fan. The number of edges in the bipartite
graph is n2. Based on the above remarks, Lemmas 1, and 2, the
following lemma can be obtained.

Lemma 3: Given a multicast fan 7, a special case of a tree,

<t ity >@N <41,

1> 7

F(py)

F(p;) F(p))

Fig. 3. Hook-up fan H with switching delay vectors.

4
t; tm; >

Fig. 4. Fan F(j) with new switching delay vectors.

an optimal multicast tree assignment for T" and the correspond-
ing optimal multicasting switching delay can be found in O(n2)
time, where 7 is the number of nodes in 7.

C. Hook-up Fans

We will use the notation F'(p) for a fan with p leaves, having
(p + 1) nodes including the root. Given a collection of vertex-
disjoint fans F(p1), F(p2), -, F(p;) with roots r1, 79, -+, 7;
respectively, a hook-up fan is defined as the composition of the
collection of fans F'(p;), 1 <4 < j, such that the hook-up fan is
atree T' = (V, E) satisfying the following properties.

) V(T) = 5:1 V(F(p:))U r where V denotes the vertex set
and r the root of T .

2) The edge setof T', E(T) = JI_; E(F)UJ{(r,m): 1 <4 <
Jh
Diagrammatically, the hook-up fans obtained by the compo-

sition operation looks as shown in Fig. 2.

D. Optimal Multicast Tree Assignment for a Hook-up Fan

We know from the previous section how to compute an opti-
mal multicast tree assignment for a fan. In this section, we will
show a method to obtain an optimal multicast tree assignment
for a hook-up fan. Consider a hook-up fan H with switching
delay vector as shown in Fig. 3. The switching delay vectors at
nodes r; are indicated in Fig. 3 as D(r;) = < t{,t5, - - -, % >, for
1<¢ <.

Let my, mo, - --, m; be the optimal multicasting switching
delays for fans F'(p1), F'(p2), - - -, F'(p;), respectively. We know
that these can be obtained by using Lemma 3. Let fp(,,), 1
< ¢ < j be the corresponding optimal multicast fan assign-
ments. We transform the hook-up fan to a fan F'(j) as shown in
Fig. 4 along with new switching delay vectors. The switching
delay vectors for the fan in Fig. 4 are D(r;) = < t} + my, t} +
mi,~~~,t§ +m; > for1 < ¢ < 7. We now compute an opti-
mal multicast tree assignment fgf;r) for fan F(5) and the cor-
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m, m,
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fF(y,) f-“(p:/ fF(p,)

Fig. 5. Fan F(j) with feasible switching delay vectors.

responding optimal multicasting delay P Dopr(F(5)). Let fg*(yjr)
=< Iy,lp,- -, l; >. We know that each [; is of the form v%,
+mg, 1< i < 5. Secondly, < v} , 02, -,v{j > is a feasible
switching delay vector for edge set E(r) in H. Based on this,
we will re-work the solution obtained on F'(7) as a solution for
the original hook-up fan H as indicated in Fig. 5. Let f.(r;) =
vl 1<i <.

Lemma 4: For the hook-up fan H in Fig. 5, the multicast tree
assignment fy given by f; and fp(,,, 1< 4 < j is a feasible
multicast tree assignment.

Proof: fpp,y, 1< 4 < j are feasible multicast fan assign-
ments for F(p;). < t:%l,vfz, - -,vﬁj > is a feasible switching
delay vector. In the reminder of this section, we will show that
fmr s also an optimal multicast tree assignment for H. We need
a few results before that. Let H be a hook-up fan as shown in
Fig. 6 with an optimal multicast tree assignment as indicated. u;
= PDmax(fr(p,)), 1< 0 < j. Let ts + us = PDopr(H), where
s € {1, 2, ---, 7}, without loss of generality. In other words,
there could be more than one path from r with the same value
for optimal delay. We break ties arbitrarily and pick one such
indexed by. |
Lemma 5: Given H as in Lemma 4, u, is optimal for F(p,),
e, us = PDopr(F(ps)) where s € {1,2,--, 7}.

Proof: Suppose u is not optimal for F'(p,). Then, there
exists an optimal assignment for F'(p,) such that the optimal
multicasting switching delay v, = PDgpr(F{p;)). Clearly, then
vy < Ug. Itis clear that using this new assignment for F(p,), we
could construct another feasible assignment for H. Let us call
this new feasible assignment for H, fOf ' [new]. In fOT[new],
we have new values for the path delays originating at 7 and end-
ing at leaves of F(p;). In particular, the maximum path delay of
ug + ts becomes vy + 5. We know that v, + &, < ug + ¢, Two
possibilities exist for the optimal assignment of H.

Dovs+ts >u+t,i# s, 1<i< jor

2)dg €{1,2,---j},q # ssuchthatug +{; > u; +t;, 1 <i < j
andi # sand ug +t5 > vs + 15

In case (i), we have a new min-max value (vs + t5) < (ugs + t,).

And this is a contradiction. In case (ii), there is a new min max

delay on a different path. In this case, ug + ¢4 > vs + ¢, and v,

+1ty < us +ts. Hence ug + 24 is a maximum that is less than

the optimal value us + 5. Again, this is a contradiction. |
Lemma 5 is crucial because it suggests that we could have

sub-optimal solutions for all but one fan and still get an opti-

m, ", coe e m

7
fF(m fF(Pz) fF(pﬁ

Fig. 6. Hook-up fan H with optimal multicast tree assignments.

mal solution or assignment for a hook-up fan. The next lemma
extends this idea and shows that any optimal assignment for a
hook-up fan can be made to consist of optimal assignments for
all fans in a hook-up fan.

Lemma 6: For a hook-up fan H, and an optimal multicast
tree assignment fg”, there exists another optimal multicast
tree assignment [ [new] such that all the fans of H, F(py),
F(py),- - -, F(p;) have optimal assignments.

Proof: From Lemma 5, we know that there exists one
fan F(p,) with an optimal assignment, where 5 € {1, 2, ---,
71. Without loss of generality, let F(p,) be a fan which does not
have an optimal assignment where ¢ # sand g € {1, 2, - -,
7}. Let PDopr(H) be the optimal multicasting switching delay
for H. We know that P Dopr(H) is of the form ug + £, where u,
is the optimal value for F(p,). Hence us + 5 > u; + 15,1 # s,
1< i < j. In particular, u, + ts > uq + t, where ug is sub-
optimal for F(pq). Let vq be optimal for F'(py). Then, vq < uq
and hence by substituting an optimal assignment for F(py), we
get a new assignment for H. The only change in the path delay is
the value of the gth path where u, + t, changes to v, + p,. Since
Us + b5 > ug + tq, we have us + t5 > vy + pg. This implies
that the new optimal assignment preserves the value of optimal
delay us + t5. Hence, all suboptimal assignments for the fans
can be replaced by optimal assignments without a change to the
optimal value us + ¢. O

Lemmas 5 and 6 lead to the following important theorem.
Theorem 7: Given a hook-up fan H as in Lemma 4 with multi-
cast tree assignment [, fy is an optimal multicast tree assign-
ment.

Proof: 'We know from Lemma 4, fy is a feasible assigo-
ment for  made up of f, and frp,), 1< 4 < j. We also know
that fy; is an optimal solution to the system of switching delay
vectors (of the fan obtained from H) < t¢ | my, th + my, - - -,zf;»
+m; >, where m; = PDopr(F(p)), and < ¢} +t5, -t} > =
D(@ry)of H, 1< i < j. From Lemma 6, we know that there ex-
ists an optimal solution for hook-up fan H, whose fans also have
optimal multicast tree assignments. This is shown in Fig. 7.

In Fig. 7, m; is the maximum delay for fan F(p;) and m; is
optimal for F(p;), 1< ¢ < j. The optimal switching delay for
Hismax {u; +¢; : 1< i < j}. Secondly, delays {u; + ¢, :
1< 4 < 7} are an optimal solution to the same set of switching
delay vectors < ti + my, th + my, - oth +my >, 1< 0 < g
Hence the theorem. i
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m, m, PN m

Fig. 7. Hook-up fan H with optimal multicasting.

a

Fig. 8. Multicast tree with duplicating delay vectors at nodes.

Theorem 7 tells us that we can obtain an optimal solution to
a hook-up fan by a bottom-up approach. Any multicast tree can

be obtained by a series of hook-up operations starting from the
base fans.

E. Algorithm and Its Time Complexity

1) Find optimal solutions to base fans F'(p;). Let PDopr(F(p;))
be the delays.

2) Hook them up and add P Dopr(F(p;)) to switching delay vec-
tors.

3) Find optimal solutions to hook-up fans with such modified
switching delay vectors.

Repeat steps 1-3 until the root of the tree is reached. After the

root is reached, re-work the obtained solutions top-down to get

the complete tree assignment.
To derive the complexity of our algorithm, we consider the

result of Lemma 3. For each fan F(pi)s, using Lemma 3, we

can compute an optimal solution in O(p? ) time where p; is the
number of leaves in fan F'(p;). During the bottom-up approach,
let us say, we have a sequence [, I3, - -, [; leaves when we get
to the root where [ + I3 + -+ + [; = O(n). Hence, the running

time is bounded by EZ:I O(l?) <>, D% =03,
Theorem 8: The optimal multicast tree assignment problem can

be solved in O(n %) time.

F. Hlustration of the Algorithm

Bottom-up approach to computing the optimal multicasting
tree assignment using hook-up fan decomposition is shown in
Fig. 8. For simplicity, we assume that the link delays are the
same on all links. The steps for computing the optimal solutions
for fans from Fig. 8 are shown in Figs. 9 and 10. Re-working the

o @

©
h

Fig. 8. Optimal solutions for fan: (a) b, {b) ¢, and (¢} d.

1,23 >

(a)

Fig. 10. (a) The hook-up fan and (b} its optimal solution.

optimal solutions, we get the optimal multicast tree shown in
Fig. 11 with PDopr(T)= 1% unit and the ordering at node ‘a’ is
'¢’, ‘b’, and ‘d’. The ordering at node ‘c’ is ‘f” and then ‘e’ The
ordering at node ‘d’ is ‘h’ and then ‘g’

IV. LOWER BOUND RESULT

From Lemma 3, we know that given a multicast fan T, a spe-
cial case of a tree, an optimal multicast tree assignment for 7°
and the corresponding optimal multicasting switching delay can
be found in O(n%) time, where n is the number of nodes in
T. Conversely, we can also show in a straightforward fashion
that solving the multicast tree problem is at least as hard as the
min-max matching problem. Hence, it is unlikely that the above
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Fig. 11. The optimal multicasting tree.

time-complexity can be improved easily. To see this, let there be
a weighted, complete bipartite graph G = (X, Y, E) where X =
{vi,v2, -, v}, Y ={1,2,---, k}, and edge set E = {(v;, ) 1
<j <k, 1<i<k}. The weight of an edge e = (v;, j) € F is
given by w((vi, N) =13, 1 < 4,5 < k.

We transform this graph into a fan T = (V, E) which is a
multicast tree with & + 1 nodes, where & of the (& + 1) nodes are
leaves attached directly to the root node. Let the leaf nodes be
V1, U2, * + , Vi attached to the root node that we call v. Let D, =
w((vs,1))= t; where 1 < j < kforeachi, 1 < ¢ < k. Indeed,
D; can be taken to be the switching delay vector for node »;.

Furthermore, it is easy to see that computing the min-max
matching on G can be achieved by computing the optimal multi-
cast tree assignment of T'. Noting that solving the optimal mul-
ticast tree assignment for an arbitrary tree is as hard as for a
special case of fan, we have proved that the optimal multicast
tree assignment problem has a lower bound of ()(n%) time.

V. CONCLUSION

In this paper, we have considered a more generalized form
of switching delay vectors where all the elements of a vector
may not be equal. Given a multicast tree with link delays and
generalized switching delay vectors at each non-leaf node, we
provide an algorithm which schedules the message delivery at
each non-leaf node in order to minimize the delay of the multi-
cast tree. Our algorithm, which has a complexity of O(n %), uses
the concept of min-max matching problem on bipartite graphs.
We also show an important lower bound result that optimal mul-
ticast switching delay problem is as hard as min-max matching
problem on bipartite graphs. As part of our future work, we will
develop an algorithm for finding the order in a multicast tree
such that the end-to-end delay variation from the root to any
two leaf nodes is minimum. Another logical extension to our
work would be to consider the link delays and switching delay
vectors as probabilistic functions.
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