• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.027 seconds

Traffic Management in Mobile Ad-hoc Network (이동 애드 혹 네트워크에서의 트래픽 관리)

  • Kang, Kyung-In;Park, Gyong-Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.9
    • /
    • pp.29-35
    • /
    • 2009
  • In this paper we propose a mobile ad-hoc routing protocal based on AODV(Ad hoc On demand Distance Vector) with traffic management support and evaluate the performance through simulation. The average reception rate is increased by establishing the shortest route, considering in advance the usable communication resources at each node. For performance evaluation, we analyze the average data reception rate, considering the node mobility.

Density-Constrained Moving Least Squares for Visualizing Various Vector Patterns (다양한 벡터 패턴 시각화를 위한 밀도 제한 이동최소제곱)

  • SuBin Lee;Jong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.577-580
    • /
    • 2023
  • 물리 기반 시뮬레이션과 같이 연속적인 움직임을 표현하기 위해서 고차 보간(High-order interpolation)을 설계하는 것을 중요한 문제이다. 본 논문에서는 제약적인 벡터와 밀도 형태를 몬테카를로법을 사용하여 이동최소제곱(MLS, Moving least squares)을 제곱하여 이를 통해 속도 필드를 표현할 수 있는 방법을 제안한다. 결과적으로 밀도의 형태를 고려하여 MLS의 가중치가 적용된 결과를 보여주며, 그 결과가 벡터 보간에 얼마나 큰 영향을 끼치는지를 다양한 실험을 통해 보여준다.

  • PDF

A Performance Comparison of Backpropagation Neural Networks and Learning Vector Quantization Techniques for Sundanese Characters Recognition

  • Haviluddin;Herman Santoso Pakpahan;Dinda Izmya Nurpadillah;Hario Jati Setyadi;Arif Harjanto;Rayner Alfred
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.101-106
    • /
    • 2024
  • This article aims to compare the accuracy of the Backpropagation Neural Network (BPNN) and Learning Vector Quantization (LVQ) approaches in recognizing Sundanese characters. Based on experiments, the level of accuracy that has been obtained by the BPNN technique is 95.23% and the LVQ technique is 66.66%. Meanwhile, the learning time that has been required by the BPNN technique is 2 minutes 45 seconds and then the LVQ method is 17 minutes 22 seconds. The results indicated that the BPNN technique was better than the LVQ technique in recognizing Sundanese characters in accuracy and learning time.

An Moving Object Segmentation for Moving Camera (이동카메라 환경에서 이동물체분할에 관한 연구)

  • Cho, Youngseok;Kang, Jingu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.47-48
    • /
    • 2013
  • 본 논문에서는 이동 카메라 환경에서 이동물체 추적을 위한 영상 분할에 대하여 연구하였다. 입력영상으로 부터 이동물체영역을 분할하기위하여 입력영상에 대하여 윤곽선을 구한 다음 윤곽선 영역에 대하여 BMA을 이용하여 이동벡터를 구한다. 구해진 이동벡터를 같은 특성의 벡터들을 분류하여 이동물체를 분할한다. 제안된 알고리즘이 다중 이동물체의 분할이 가능하였다.

  • PDF

Wild Image Object Detection using a Pretrained Convolutional Neural Network

  • Park, Sejin;Moon, Young Shik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.366-371
    • /
    • 2014
  • This paper reports a machine learning approach for image object detection. Object detection and localization in a wild image, such as a STL-10 image dataset, is very difficult to implement using the traditional computer vision method. A convolutional neural network is a good approach for such wild image object detection. This paper presents an object detection application using a convolutional neural network with pretrained feature vector. This is a very simple and well organized hierarchical object abstraction model.

A study on the Dynamic Signature Verification System

  • Kim, Jin-Whan;Cho, Hyuk-Gyu;Cha, Eui-Young
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.271-276
    • /
    • 2004
  • This paper is a research on the dynamic signature verification of error rate which are false rejection rate and false acceptance rate, the size of signature verification engine, the size of the characteristic vectors of a signature, the ability to distinguish similar signatures, the processing speed and so on. Also, we present our efficient user interface and performance results.

Response Modeling with Semi-Supervised Support Vector Regression (준지도 지지 벡터 회귀 모델을 이용한 반응 모델링)

  • Kim, Dong-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.125-139
    • /
    • 2014
  • In this paper, I propose a response modeling with a Semi-Supervised Support Vector Regression (SS-SVR) algorithm. In order to increase the accuracy and profit of response modeling, unlabeled data in the customer dataset are used with the labeled data during training. The proposed SS-SVR algorithm is designed to be a batch learning to reduce the training complexity. The label distributions of unlabeled data are estimated in order to consider the uncertainty of labeling. Then, multiple training data are generated from the unlabeled data and their estimated label distributions with oversampling to construct the training dataset with the labeled data. Finally, a data selection algorithm, Expected Margin based Pattern Selection (EMPS), is employed to reduce the training complexity. The experimental results conducted on a real-world marketing dataset showed that the proposed response modeling method trained efficiently, and improved the accuracy and the expected profit.

Optimizing Feature Extractioin for Multiclass problems Based on Classification Error (다중 클래스 데이터를 위한 분류오차 최소화기반 특징추출 기법)

  • Choi, Eui-Sun;Lee, Chul-Hee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.2
    • /
    • pp.39-49
    • /
    • 2000
  • In this paper, we propose an optimizing feature extraction method for multiclass problems assuming normal distributions. Initially, We start with an arbitrary feature vector Assuming that the feature vector is used for classification, we compute the classification error Then we move the feature vector slightly in the direction so that classification error decreases most rapidly This can be done by taking gradient We propose two search methods, sequential search and global search In the sequential search, an additional feature vector is selected so that it provides the best accuracy along with the already chosen feature vectors In the global search, we are not constrained to use the chosen feature vectors Experimental results show that the proposed algorithm provides a favorable performance.

  • PDF