• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.028 seconds

Automatic Detection of Cow's Oestrus in Audio Surveillance System

  • Chung, Y.;Lee, J.;Oh, S.;Park, D.;Chang, H.H.;Kim, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.7
    • /
    • pp.1030-1037
    • /
    • 2013
  • Early detection of anomalies is an important issue in the management of group-housed livestock. In particular, failure to detect oestrus in a timely and accurate way can become a limiting factor in achieving efficient reproductive performance. Although a rich variety of methods has been introduced for the detection of oestrus, a more accurate and practical method is still required. In this paper, we propose an efficient data mining solution for the detection of oestrus, using the sound data of Korean native cows (Bos taurus coreanea). In this method, we extracted the mel frequency cepstrum coefficients from sound data with a feature dimension reduction, and use the support vector data description as an early anomaly detector. Our experimental results show that this method can be used to detect oestrus both economically (even a cheap microphone) and accurately (over 94% accuracy), either as a standalone solution or to complement known methods.

Robust Facial Expression Recognition Based on Local Directional Pattern

  • Jabid, Taskeed;Kabir, Md. Hasanul;Chae, Oksam
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.784-794
    • /
    • 2010
  • Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance-based feature descriptor, the local directional pattern (LDP), to represent facial geometry and analyze its performance in expression recognition. An LDP feature is obtained by computing the edge response values in 8 directions at each pixel and encoding them into an 8 bit binary number using the relative strength of these edge responses. The LDP descriptor, a distribution of LDP codes within an image or image patch, is used to describe each expression image. The effectiveness of dimensionality reduction techniques, such as principal component analysis and AdaBoost, is also analyzed in terms of computational cost saving and classification accuracy. Two well-known machine learning methods, template matching and support vector machine, are used for classification using the Cohn-Kanade and Japanese female facial expression databases. Better classification accuracy shows the superiority of LDP descriptor against other appearance-based feature descriptors.

Direct Power Control of a DFIG in Wind Turbines to Improve Dynamic Responses

  • Jou, Sung-Tak;Lee, Sol-Bin;Park, Yong-Bae;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.781-790
    • /
    • 2009
  • This paper presents an implementation of a direct active and reactive power control for a doubly fed induction generator (DFIG), which is applied to a wind generation system as an alternative to the classical field-oriented control (FOC). The FOC has a complex control structure that consists of a current controller, a power controller and frame transformations. The performance of the FOC depends highly on parameter variations of the rotor and stator resistances and the inductances. The proposed direct power control (DPC) method produces a fast and robust power response without the need of complex structure and algorithms. One drawback, however, is its high power ripple during a steady state. In this paper, active and reactive power controllers and space-vector modulation (SVM) are combined to replace hysteresis controllers used in the original DPC drive, resulting in a fixed switching frequency of the power converter. Simulation results with the FOC and DPC for a 3kW DFIG are given and discussed, and the experimental results of a test involving identical machines are presented to illustrate the feasibility of the proposed control strategy.

Survey on Nucleotide Encoding Techniques and SVM Kernel Design for Human Splice Site Prediction

  • Bari, A.T.M. Golam;Reaz, Mst. Rokeya;Choi, Ho-Jin;Jeong, Byeong-Soo
    • Interdisciplinary Bio Central
    • /
    • v.4 no.4
    • /
    • pp.14.1-14.6
    • /
    • 2012
  • Splice site prediction in DNA sequence is a basic search problem for finding exon/intron and intron/exon boundaries. Removing introns and then joining the exons together forms the mRNA sequence. These sequences are the input of the translation process. It is a necessary step in the central dogma of molecular biology. The main task of splice site prediction is to find out the exact GT and AG ended sequences. Then it identifies the true and false GT and AG ended sequences among those candidate sequences. In this paper, we survey research works on splice site prediction based on support vector machine (SVM). The basic difference between these research works is nucleotide encoding technique and SVM kernel selection. Some methods encode the DNA sequence in a sparse way whereas others encode in a probabilistic manner. The encoded sequences serve as input of SVM. The task of SVM is to classify them using its learning model. The accuracy of classification largely depends on the proper kernel selection for sequence data as well as a selection of kernel parameter. We observe each encoding technique and classify them according to their similarity. Then we discuss about kernel and their parameter selection. Our survey paper provides a basic understanding of encoding approaches and proper kernel selection of SVM for splice site prediction.

Nearest-Neighbors Based Weighted Method for the BOVW Applied to Image Classification

  • Xu, Mengxi;Sun, Quansen;Lu, Yingshu;Shen, Chenming
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1877-1885
    • /
    • 2015
  • This paper presents a new Nearest-Neighbors based weighted representation for images and weighted K-Nearest-Neighbors (WKNN) classifier to improve the precision of image classification using the Bag of Visual Words (BOVW) based models. Scale-invariant feature transform (SIFT) features are firstly extracted from images. Then, the K-means++ algorithm is adopted in place of the conventional K-means algorithm to generate a more effective visual dictionary. Furthermore, the histogram of visual words becomes more expressive by utilizing the proposed weighted vector quantization (WVQ). Finally, WKNN classifier is applied to enhance the properties of the classification task between images in which similar levels of background noise are present. Average precision and absolute change degree are calculated to assess the classification performance and the stability of K-means++ algorithm, respectively. Experimental results on three diverse datasets: Caltech-101, Caltech-256 and PASCAL VOC 2011 show that the proposed WVQ method and WKNN method further improve the performance of classification.

Enhanced VLAD

  • Wei, Benchang;Guan, Tao;Luo, Yawei;Duan, Liya;Yu, Junqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3272-3285
    • /
    • 2016
  • Recently, Vector of Locally Aggregated Descriptors (VLAD) has been proposed to index image by compact representations, which encodes powerful local descriptors and makes significant improvement on search performance with less memory compared against the state of art. However, its performance relies heavily on the size of the codebook which is used to generate VLAD representation. It indicates better accuracy needs higher dimensional representation. Thus, more memory overhead is needed. In this paper, we enhance VLAD image representation by using two level hierarchical-codebooks. It can provide more accurate search performance while keeping the VLAD size unchanged. In addition, hierarchical-codebooks are used to construct multiple inverted files for more accurate non-exhaustive search. Experimental results show that our method can make significant improvement on both VLAD image representation and non-exhaustive search.

Input-Output Feedback Linearization of Sensorless IM Drives with Stator and Rotor Resistances Estimation

  • Hajian, Masood;Soltani, Jafar;Markadeh, Gholamreza Arab;Hosseinnia, Saeed
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.654-666
    • /
    • 2009
  • Direct torque control (DTC) of induction machines (IM) is a well-known strategy of these drives control which has a fast dynamic and a good tracking response. In this paper a nonlinear DTC of speed sensorless IM drives is presented which is based on input-output feedback linearization control theory. The IM model includes iron losses using a speed dependent shunt resistance which is determined through some effective experiments. A stator flux vector is estimated through a simple integrator based on stator voltage equations in the stationary frame. A novel method is introduced for DC offset compensation which is a major problem of AC machines, especially at low speeds. Rotor speed is also determined using a rotor flux sliding-mode (SM) observer which is capable of rotor flux space vector and rotor speed simultaneous estimation. In addition, stator and rotor resistances are estimated using a simple but effective recursive least squares (RLS) method combined with the so-called SM observer. The proposed control idea is experimentally implemented in real time using a FPGA board synchronized with a personal computer (PC). Simulation and experimental results are presented to show the capability and validity of the proposed control method.

Deep Learning in Drebin: Android malware Image Texture Median Filter Analysis and Detection

  • Luo, Shi-qi;Ni, Bo;Jiang, Ping;Tian, Sheng-wei;Yu, Long;Wang, Rui-jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3654-3670
    • /
    • 2019
  • This paper proposes an Image Texture Median Filter (ITMF) to analyze and detect Android malware on Drebin datasets. We design a model of "ITMF" combined with Image Processing of Median Filter (MF) to reflect the similarity of the malware binary file block. At the same time, using the MAEVS (Malware Activity Embedding in Vector Space) to reflect the potential dynamic activity of malware. In order to ensure the improvement of the classification accuracy, the above-mentioned features(ITMF feature and MAEVS feature)are studied to train Restricted Boltzmann Machine (RBM) and Back Propagation (BP). The experimental results show that the model has an average accuracy rate of 95.43% with few false alarms. to Android malicious code, which is significantly higher than 95.2% of without ITMF, 93.8% of shallow machine learning model SVM, 94.8% of KNN, 94.6% of ANN.

A Prediction Model of the Sum of Container Based on Combined BP Neural Network and SVM

  • Ding, Min-jie;Zhang, Shao-zhong;Zhong, Hai-dong;Wu, Yao-hui;Zhang, Liang-bin
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.305-319
    • /
    • 2019
  • The prediction of the sum of container is very important in the field of container transport. Many influencing factors can affect the prediction results. These factors are usually composed of many variables, whose composition is often very complex. In this paper, we use gray relational analysis to set up a proper forecast index system for the prediction of the sum of containers in foreign trade. To address the issue of the low accuracy of the traditional prediction models and the problem of the difficulty of fully considering all the factors and other issues, this paper puts forward a prediction model which is combined with a back-propagation (BP) neural networks and the support vector machine (SVM). First, it gives the prediction with the data normalized by the BP neural network and generates a preliminary forecast data. Second, it employs SVM for the residual correction calculation for the results based on the preliminary data. The results of practical examples show that the overall relative error of the combined prediction model is no more than 1.5%, which is less than the relative error of the single prediction models. It is hoped that the research can provide a useful reference for the prediction of the sum of container and related studies.

Few-Shot Image Synthesis using Noise-Based Deep Conditional Generative Adversarial Nets

  • Msiska, Finlyson Mwadambo;Hassan, Ammar Ul;Choi, Jaeyoung;Yoo, Jaewon
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.79-87
    • /
    • 2021
  • In recent years research on automatic font generation with machine learning mainly focus on using transformation-based methods, in comparison, generative model-based methods of font generation have received less attention. Transformation-based methods learn a mapping of the transformations from an existing input to a target. This makes them ambiguous because in some cases a single input reference may correspond to multiple possible outputs. In this work, we focus on font generation using the generative model-based methods which learn the buildup of the characters from noise-to-image. We propose a novel way to train a conditional generative deep neural model so that we can achieve font style control on the generated font images. Our research demonstrates how to generate new font images conditioned on both character class labels and character style labels when using the generative model-based methods. We achieve this by introducing a modified generator network which is given inputs noise, character class, and style, which help us to calculate losses separately for the character class labels and character style labels. We show that adding the character style vector on top of the character class vector separately gives the model rich information about the font and enables us to explicitly specify not only the character class but also the character style that we want the model to generate.