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Abstract 
 

Recently, Vector of Locally Aggregated Descriptors (VLAD) has been proposed to index 

image by compact representations, which encodes powerful local descriptors and makes 

significant improvement on search performance with less memory compared against the state 

of art. However, its performance relies heavily on the size of the codebook which is used to 

generate VLAD representation. It indicates better accuracy needs higher dimensional 

representation. Thus, more memory overhead is needed. In this paper, we enhance VLAD 

image representation by using two level hierarchical-codebooks.  It can provide more accurate 

search performance while keeping the VLAD size unchanged. In addition, 

hierarchical-codebooks are used to construct multiple inverted files for more accurate 

non-exhaustive search. Experimental results show that our method can make significant 

improvement on both VLAD image representation and non-exhaustive search. 
 

 
 

Keywords: hierarchical-codebook; enhanced VLAD; projected residual vector quantization; 
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1. Introduction 

Content-based image retrieval (CBIR) is a historical line of research in Multimedia and it has 

received extensive attentions [1-12]. The main task of it is image similarity search, i.e., finding 

the images in a database that are similar to a query image. There are two problems that all 

practical system must be solved, which are search time and storage size. To achieve desirable 

performance, common solutions use a set of local descriptors which is extracted from images 

called “bag of descriptors”. However, the prohibitive storage cost restricts the use of bag of 

descriptors because of the reason that the size of it is usually larger than the image itself. Many 

methods resort to compute a lightweight signature using the bag of descriptors to represent 

images. The most famous representative one is the bag-of-words representation (BOF) [13] 

which is borrowed from text retrieval. BOF aggregates a bag of descriptors into a single vector 

which is obtained as the histogram of the assignment of all image descriptors to code words. 

Generally, to achieve comparable search performance, the number of code words should be 

large enough, e.g., up to millions. Therefore, BOF can restrict some really application because 

of the prohibitive memory overhead. 

In recent years, another image index scheme was provided [14] [15], i.e., Vector of Locally 

Aggregated Descriptors (VLAD) which is a simplified version of Fisher Vector (FV) [16] [17]. 

It models the local descriptors space by a small codebook obtained by clustering a large set of 

local descriptors. The model is simply the sum of residual vectors, i.e., all centered descriptors 

from their nearest code words. Each code word is responsible for one subvector. The final 

signature is obtained by a concatenation of all subvectors. Comparing with BOF, VLAD can 

obtain a comparable search quality with less memory. Recently, several variations have been 

proposed to improve the quality of VLAD representation [18]. 

In this paper, we propose to leverage two level hierarchical-codebooks to enhance the 

VLAD representation. The key idea of this paper is to generate smaller residual while keeping 

the size of VLAD unchanged. The hierarchical-codebook is also applied to generate multiple 

inverted files to improve non-exhaustive search. 

This paper is organized as follows. Section 2 briefly reviewed VLAD formulation and some 

improvements, while section 3 describes our enhanced VLAD, encode strategy and the 

non-exhaustive search strategies based on multiple inverted files. Experimental results 

validate our algorithm in section 4. The conclusion is obtained in section 5. 

2. Related Work 

VLAD [14] [15] is an image indexing technique that produces a vector representation   from 

a set             of N local d-dimensional descriptors extracted from a given image. 

Similar to BOF, a visual codebook             is learnt off-line. The codebook is formally 

used as a quantization function assigning any input local descriptor to its closest centroid (code 

word) as 

   
         

                                                                                  (1) 

                 
                                                                    (2) 

Where     refers to L2 norm. 
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Then aggregation operation is performed as follows. For each quantization index    
     , a d-dimensional vector    is obtained by accumulating the residual vectors which are 

generated by subtracting descriptors from their least distance code word as equation 3. 

                                                                                                  (3) 

The VLAD representation can be obtained by concatenating all K d-dimensional vector into a 

D=K×d dimensional vector as               
 
 
 

 . An example of VLAD generation 

process is illustrated as Fig. 1. 

 
Fig. 1. An illustration of VLAD generation process 

 

Two normalizations are then implemented to suppress local burst appearance of an image. 

Firstly, a component-wise nonlinear operation is applied: each component           is 

modified as                 
 

, where the quantity   is a parameter such that    . This 

is the so-called “power-law normalization” [9], which is motived in [7]
 
by the presence of 

burst in natural image. Finally, VLAD vector is L2-normalized as        .  

To satisfy memory constraint, VLAD memory footprint can be reduced significantly by 

performing a jointed optimized succession of dimension reduction and compression [14][15]
 

with Product Quantization (PQ)
 
[19]. Firstly the dimensionality of VLAD is reduced to D’<D 

components by PCA. Subsequently, after a random rotation that balances the subvectors of 

reduced vector, PQ [19] splits it into M subvectors, which are separately quantized with a 

k-means quantizer. This compression scheme allows the computation of distance between a 

query and a set of vectors in compressed domain. It does not require the explicit 

decompression of the database vectors and is therefore very fast. The choice of D’ and M is 

tuned thanks to an optimization procedure that solely relies on a reconstruction criterion. 

 The original normalizations are prone to putting much weight on burst visual features, 

resulting in a sub optional measure of image similarity. To alleviate the problem, R. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 7, July 2016                                        3275 

Arandjelovic et.al [18] proposed a new normalization, termed intra-normalization (IN). The 

key idea of it is for each code word to L2 normalize the residuals summation within each 

VLAD block as 

                                                                (4) 

Comparing against the power-law normalization which discounts the burst effect, the 

inter-normalization fully suppresses the burst effect [18] [20]. 

3. Enhanced VLAD  

3.1 EVLAD Framework 

In this section, we introduce a technique, called Enhanced VLAD (EVLAD), to improve 

VLAD representation by utilizing two level hierarchical-codebooks.  

For VLAD representation, our observation is that VLAD representation becomes more 

powerful by increasing the size of codebook. The main reason can be that the smaller 

quantization errors are generated by using the bigger codebook. However, with the original 

VLAD framework, the higher dimensional VLAD representation will be generated with the 

bigger codebook and increase the memory overhead inevitably. This inspires us to partition 

the local descriptors spaces with finer-granularity and to generate the smaller quantization 

errors while keeping the VLAD vector dimensionality unchanged. It is proposed to solve 

question by using two level hierarchical-codebooks and the resulting VLAD is termed the 

Enhanced VLAD (EVLAD). 

Our two level hierarchical-codebooks learnt off-line are something like as hierarchical 

k-means. However, ours admits that the branches of each level can be different. For the sake of 

clarity, some notions are described as follows.  The first level codebook with K centroids 

(code words), which is denoted by              , partitions the N training local descriptors 

into K different subset actually. The local descriptors in the same subset are further used to 

train L centroids which are served as the second level codebooks and denoted by    

    
      

        
      

       
      

  . Here, the parameters K and L are maybe 

different. The two level codebooks are formally used as 1+K quantization functions assigning 

any input local descriptors into its two level closest centroid separately as 

                                                                     (5) 

                   
                                                        (6) 

  
       

                                                                  (7) 

    
           

  
    

      
                                          (8) 

                                                     
                                                               

                                                                    

                                          

Where     refers to the L2 norm. 

As far as aggregating pipeline is concerned, EVLAD is different from the original VLAD.  

Let the first level codebook size K, EVLAD vector as VLAD vector also has K subvectors and 

code word is responsible for a subvector which accumulates the corresponding residual 

vectors. However, the generating residual vector bases are different.  For a local descriptor x, 

EVLAD handle it as follows. As equation 9, the first level codebook is used as a quantizer and 

the quantization index i of the descriptor x determine the related subvector to which x’s 

residual vector should add. 

               
                                                  (9) 



3276                                                                                                                                                        Wei et al.: Enhanced VLAD 

But the exact residual vector about descriptor x is generated based on the second level code 

word    
  , where   

  in   
  has the least distance to x. And the residual vector will be added to 

the i
th
 sub-vector of EVLAD vector as equation 10. 

        
 

             
       

                                                  (10) 

An example of EVLAD descriptor generation process is illustrated as Fig. 2.  

 

Fig. 2. An illustration of EVLAD descriptor generation process 

 

In this example, the descriptor space is first partitioned into 5 quantization cells, and the cell 

centers, i.e. the first level code words, are represented in different color circles. Further, each 

cell is split into 3 new parts, and each center, i.e. the second code word, is represented as same 

color smaller circle. Residual computation is obtained by subtracting descriptor from the 

nearest second level code word. Thus, the accumulated residuals represented as purple arrow 

are smaller than residuals generated with VLAD framework shown as Fig. 1.   

Our EVLAD is then obtained by two normalization operations. First, a subvector-wise 

L2-normalization is applied as            which is termed intra-normalization [18] 

followed by concatenating all K d-dimensional subvectors into a D = K×d dimensional vector. 

The power-law normalization applied in original VLAD formulation is omitted in EVLAD 

formulation. Finally, EVLAD vector is L2-normalized as        . In summary, our 

EVLAD is described as Algorithm 1. 

 

Algorithm 1 Computation of EVLAD descriptor v  from a set of descriptors             . The 

hierarchical codebooks               and       
      

      are learnt on a training set by using 

k-means, where  
     

      
        . 
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for k=1:K  

                                                               //initialization 

for n=1:N  

                           
         

                     
    

          
   

                        
                                // aggregate residual vectors 

for k=1:K 

                      
      

                               // intra-normalizatio 

                  

                                                            // L2-normalization 

3.2 Complexity Analysis 

The complexity of our EVLAD is described as follows. To store the hierarchical-codebook, 

the storage complexity is       . Because the parameters K and L are usually small, the 

memory overhead of the hierarchical-codebook can be omitted. 

 Given an image with N local descriptor, to generate the EVLAD representation, the 

computational complexity is           . Compared against the original computational 

complexity       , our algorithm increases the computation complexity moderately. 

3.3 From vector to code 

The resulting EVLAD vectors generated as Algorithm 1 are high dimensional and the 

required storage overhand is prohibitive for large scale database. In this section, we address 

the general problem of encoding a high dimensional image descriptor with only several bytes 

while keeping desirable discrimination. Given an image descriptor, a D-dimensional input 

vector, we want to generate a B bits code to encode the image representation, such that the 

approximate nearest neighbors of a (non-encoded) query vector can be searched efficiently in 

a set of encoded database vectors. This problem is handled by projected residual vector 

quantization [23] (PRVQ) which can satisfy memory constraint and offer desirable search 

accuracy. 

PRVQ quantizer consists of multiple stage-quanitzers. In each stage, a projection matrix is 

used to project the original vector into a low dimensional space. The projected vectors are used 

to learn a stage-quantizer by clustering algorithm such as k-means. Then, the quantization 

errors of the projected vectors are reprojected by the transposition of the projection matrix into 

the original vector space to get new residual vectors set which are further used to learn a new 

stage projection matrix and stage-quantizer. We repeat this process m times, a quantizer 

composed of m stage-quantizers can be learnt. When quantizing a database vector, the 

projection matrixes and quantizers constructed in each training stage are used to generate a 

tuple of indices which correspond to the serial number whose cluster centroid has the least 

distance to the vector’s stage residual. Let each individual stage-quantizer have ks 

reproduction values. In general, to limit the assignment complexity, ks is small (e.g., ks = 256). 

However, the set K of centroids induced by PRVQ quantizer is large        . When a 

query q is submitted, the distance between q and a database vector x is used as similarity 
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measure.  Comparing with symmetric distance computation (SDC), the asymmetric distance 

computation (ADC) with the smaller distance error is computed as  

                    
   

    
 
                 

   
    

 
           

   
        (13) 

Where   
  and    are the jth centroid and the projection matrix respectively in stage i. The 

term      affects equally for all database vectors and can be neglected when sorting the 

offline. The summation term          
   

     can be read from look-table. So the search result 

can be obtained quickly. The detailed introduction of PRVQ see reference [23]. 

3.4 Non-exhaustive search 

PRVQ provides an approximate solution for fast nearest neighbor search and reduces the 

memory constraints significantly for storing the EVLAD descriptors by encoding them into 

compact code. However, the search is exhaustive. In this section, we introduce a popular 

non-exhaustive solution by use of multiple inverted files. It has been found that multiple 

inverted files, obtained by multiple independent quantizers (codebooks), are able to achieve 

practically good recall and speed. In this section, a simple but effective algorithm is introduced 

to generate multiple quantizers by use of the two level hierarchical-codebooks. 

 

The multiple quantizaters devote to group the second level code words into L groups and 

each group with K code words. An example is shown as Fig. 3. In this example, the second 

code words are grouped into 4 groups which are illustrated as 4 different color circles and each 

group has 3 code words. How the multiple quantizers are generated effectively? A simple but 

suboptimal scheme can be adopted as follows. First K code words are selected out randomly 

without replacement from each of the second level K codebooks to form one quantizer. All L 

quantizers are constructed by repeating the above process L times. We refer to these L 

quantizers as random-multiple-quantizers (RMQs). However, a bad case can be present, in 

which, the code words in some quantizers are too concentrated while those in other quantizers 

are too loose. It can produce large quantization error when they are used to create multiple 

inverted files for large scale retrieval thus deteriorates the search performance. A better 

strategy should disperse the code words in every quantizer so as to minimize the quantization 

errors.  

Algorithm 2 constructs L quantizers by dispersing the second level K codebooks 

incrementally into L groups and each group (can be seen as a new codebook, i.e., quantizer) is 

 
Fig. 3.  An illustration of multiple quantizers generated from the second code words 

represented as color circles and the same color code words are grouped into the same quantizer. 
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with K code words. First, we use   
  to initialize L groups by assigning L code words into L 

groups without replacement. The remainder K-1 codebooks are progressively dispersed into L 

groups. When dealing with the codebook   
       , we assign all its L code words into L 

different groups without replacement. Algorithm 3 shows us how to disperse the code words 

of   
 . It is based on the distances matrix     which stores the distances between centroids of 

all the groups and codebook   
 . In Algorithm 3, idx is an indicator and        indicates the 

group number to which the j
th
 code word of codebook    

  should be assigned. Firstly, an 

initialization is implemented. Then, a rectification whose objective is maximizing the sum of 

distances between the group centroids and the code words of codebook    
  is performed. 

After the indicator idx is obtained by Algorithm 3, it is used to aid to assign code word of 

codebook    
   into corresponding group. We then update the centroid of group by 

recalculating the mean of all code words of each group. We repeat the above process K-1 times 

until K-1 codebooks are handled out. The final L groups (quantizers) are termed as 

enhanced-multiple-quantizers (EMQs).After the L EMQs are built, they can be used to 

generate L inverted files when the database vectors are quantized. 

4. Experimental Results and Analysis 

In order to evaluate our work, we adopt some public datasets and corresponding evaluation 

protocols that are usually considered in this context. 
 

Algorithm 2 Computing L quantizers Q from two level codebooks              and 

      
      

  , where   
     

      
        .  

for l=1:L 

                
                                   // initialization by using  

   

                                          //   
 is the centroid of quantizer    

for k=2:K 

                       
                   // compute the initial distance                                                         

idx = compute_indicator(D)           // idx(j), an indicator computed as Algorithm 3, 

for j=1:L 

                   
               // update quantizers 

                                  // update quantizer centroids 

Algorithm 3 Computing idx from distance matrix D 

for l = 1:L 

idx(l) = l
                                            

 //initialize indicator 

for i = 1:L-1 

for j = i +1:L 

     if  D(idx(i), i) + D(idx(j), j) < D(idx(j), i) + D(idx(i), j) 

swap(idx(i), idx(j))                 // swap indicator 
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4.1 Dataset and Evaluation Protocol 

Holidays dataset. Holidays dataset [21] is a collection of 1491 high resolution personal 

photos of different locations and objects, 500 of them being used as queries, with the query 

removed from the ranked list. The accuracy is measured by the mean Average 

Precision(mAP). 

UKB dataset. The UKB dataset [22] contains images of 2550 objects, each of which is 

represented by 4 images. The most common evaluation metric for this dataset counts the 

average number of relevant images (including the query itself) that are ranked in the first four 

positions. This corresponds to 4 times the recall@4 measure, i.e., the best performance is 4. 

Holidays_Flickr1M dataset. Large scale evaluation is performed on Holidays merged with 

Flickr1M which consists of 1 million images collected from Flickr. The accuracy is measured 

by mAP.  

4.2 Performance of EVLAD 

(a) Impact of the codebook size 

 
(a) 

 
(b) 

Fig. 4. An illustration of the impact of the parameters K and L for EVLAD. (a) Holidays, (b) UKB 
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We first test the impact of different K and L on search accuracy with the hierarchical codebook 

learnt with the independent training dataset Flickr60k. The results are shown in Fig.  4. When 

L equals to 1, our EVLAD is equivalent to VLADIN [18]. From Fig. 4, we can see that our 

EVLAD outperform the VLADIN formulation with both the Holidays dataset (Fig. 4(a)) and 

UKB dataset (Fig. 4(b)). Fixing the parameter L, the EVLAD performance gets better by 

increasing the value of the parameter K. It indicates that higher dimensional representation 

usually provide better accuracy. As we can see from Fig. 4(a) that EVLAD improves 

obviously before reaching its performance peak (L=15) by increasing the value of the 

parameter L for different configurations of the parameter K. In the cases of L>15, EVLAD 

does not improve obviously. On the contrary, it starts to drop slowly or fluctuate smoothly. 

The same situation happens to the UKB dataset (Fig. 4(b)), and EVLAD reachs its 

performance extreme point in the case of L = 10. In the following comparison against the state 

of art, we will still just consider the case of K = 64 and L = 15 which we still term it EVLAD. 

 (b) Comparison with state of the art 

Table 1.  Comparison of EVLAD with state-of-the-art on Holidays  

Descriptor K D 
Raw 

descriptors 

After dimensionality reduction 

to 128 compoments 

Encoded into 8 bytes 

with PRVQ (P=32) 

BOW
[
14] 20k 20k 0.404 0.444 --- 

 Fisher[14] 64 8192 0.495 0.492 --- 

VLAD 

64 8192 

0.561 

0.594 

0.576 0.575 

VLADIN 0.611 0.584 

EVLAD 64 8192 0.635 0.637 0.606 

Table 1 compares our EVLAD representation with the result of literature [14] (mAP 

performance for Holidays), which includes different vector representations, in particular, FV 

and BOF baseline. For VLAD and VLADIN we use the code provided by the authors and 

perform it by ourselves. With the size of 8192, our EVLAD outperforms all the baselines. 

Particularly, our EVLAD outperforms BOF by 57.1% and Fisher by 28.2% and the original 

VLAD by 13.3%. Although comparing with the best baseline VLADIN, the mAP increasement 

is about 6.9%, from 0.594 to 0.635. Column 4 and column 5 of Table 1 show the relative 

improvement of EVLAD when applying dimensionality reduction and using compact codes 

obtained by PRVQ [23].  

 

Table 2.  Comparison of EVLAD with state-of-the-art on UKB (Recall@4 performance) 

Descriptor K D 
Raw 

descriptors 

After dimensionality 

reduction to128 compoments 

Encoded into 8 bytes 

with PRVQ (P=32) 

BOW[14] 20k 20k 2.87 2.95 --- 

Fisher[14] 64 8192 3.09 3.09 --- 
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VLAD 

64 8192 

3.20 3.19 3.19 

VLADIN 3.36 3.32 3.32 

EVLAD 64 8192 3.51 3.44 3.44 

Similarly, with UKB dataset, to validate our approach, we carry out the same performance 

evaluation and the results are shown in Table 2. From Table 2, we also can see that our 

EVLAD shows the same outstanding performance. Particularly, our EVLAD outperforms 

BOF by 22.3% and Fisher by 13.6% and the original VLAD by 9.7%. Although comparing 

with the best baseline VLADIN, the Recall@4 increasement is about 4.5%, from 3.36 to 3.51. 

Similarily, Column 4 and 5 of Table 2 show the relative improvement of EVLAD when 

applying dimensionality reduction and using compact codes obtained by PRVQ [23]. 

(c) Large scale image retrieval 

Table 3.  Large scale search on Holidays_Flickr1M (mAP performance) 

Descriptor K D 
Raw 

descriptors 

After dimensionality reduction 

to128 compoments 

Encoded into 8 bytes 

with PRVQ (P=32) 

VLAD 

64 8192 

0.545 0.335 0.322 

VLADIN 0.576 0.358 0.328 

EVLAD 0.607 0.374 0.339 

With dataset up to 1 million images and compact image descriptor (128D), we test our 

EVLAD on large scale image retrieval by performing exhaustive nearest neighbor search with 

raw descriptors and compressed version generated with PCA projection. We also further 

encode the compressed vectors into compact codes with PRVQ[23] to satisfy the memory 

constraints. In addition, to validate the superiority of our EVLAD, we also perform VLAD and 

VLADIN with the same setup as EVLAD. The test results are shown in Table 3.  As we can see 

from Table 3, EVLAD show excellent performance in all different configurations. 

4.3 Performance of non-exhaustive search 

Table 4. non-exhaustive search combined with PRVQ (P=32) on Holidays+Flickr1M 

K L 

exhaustive SIF RMQs EMQs 

time mAP time mAP time mAP time mAP 

32 8 1001491 0.339 29921 0.269 592257 0.337 584833 0.338 

64 8 1001491 0.339 14541 0.276 376941 0.334 351773 0.337 

128 8 1001491 0.339 6794 0.273 198273 0.314 152855 0.337 

32 16 1001491 0.339 29755 0.284 891807 0.337 861585 0.339 
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64 16 1001491 0.339 14612 0.283 622050 0.338 608996 0.339 

128 16 1001491 0.339 7126 0.294 402635 0.332 386175 0.338 

With the Holidays_Flickr1M dataset described with EVLAD, We evaluate our non-exhaustive 

search strategy combined with PRVQ. We perform three different non-exhaustive search 

strategies which are single inverted file (SIF), RMQs and EMQs respectively. For fair 

comparison, SIF traverses L inverted lists for a given query. The results in different settings 

are shown in Table 4 and the time is measured by the average traversed vectors. As we can see 

from Table 4 that SIF retrieval performance is the worst although it spends the least search 

time. Compared against exhaustive search, EMQs almost obtains the same performance while 

spending far less search time. RMQs obtain a little worse retrieval accuracy and spend a little 

more search time than EMQs.  In conclusion, EMQs show the outstanding performance in 

search time and retrieval accuracy. 

5. Conclusion 

This paper has analyzed the VLAD representation, and shows that it leads to suboptimal 

results due to the limitation: to obtain better accuracy, VLAD should be with higher 

dimensional representation. We propose to leverage hierarchical codebooks to solve the 

problem. Our approach significantly outperforms the state of the art in term of search quality. 

In addition, 2-level hierarchical-codebooks are used to build multiple inverted files for more 

accurate and faster search. Experimental results show that our method can make significant 

improvement on both VLAD image representation and non-exhaustive search.   
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