In this paper, a public key knapsack cryptosystem algorithm is based on the security to a difficulty of polynomial factorization in computer communication networks is proposed. For the proposed public key knapsack cryptosystem, a polynomial vector Q(x,y,z) is formed by transform of superincreasing vector P, a polynomial g(x,y,z) is selected. Next then, the two polynomials Q(x,y,z) and g(x,y,z) is decided on the public key. The enciphering first selects plaintext vector. Then the ciphertext R(x,y,z) is computed using the public key polynomials and a random integer $\alpha$. For the deciphering of ciphertext R(x,y,z), the plaintext is determined using the roots x, y, z of a polynomial g(x,y,z)=0 and the increasing property of secrety key vector. Therefore a public key knapsack cryptosystem is based on the security to a difficulty of factorization of a polynomial g(x,y,z)=0 with three variables. The propriety of the proposed public key cryptosystem algorithm is verified with the computer simulation.
Journal of the Korea Society of Computer and Information
/
v.17
no.12
/
pp.179-185
/
2012
This paper proposes a design of RSIDS(RST and SVM based Intrusion Detection System) using RST(Rough Set Theory) and SVM(Support Vector Machine) algorithm. The RSIDS consists of PrePro(PreProcessing) module, RRG(RST based Rule Generation) module, and SAD(SVM based Attack Detection) module. The PrePro module changes the collected information to the data format of RSIDS. The RRG module analyzes attack data, generates the rules of attacks, extracts attack information from the massive data by using these rules, and transfers the extracted attack information to the SAD module. The SAD module detects the attacks by using it, which the SAD module notifies to a manager. Therefore, compared to the existing SVM, the RSIDS improved average ADR(Attack Detection Ratio) from 77.71% to 85.28%, and reduced average FPR(False Positive ratio) from 13.25% to 9.87%. Thus, the RSIDS is estimated to have been improved, compared to the existing SVM.
Journal of Information Technology and Architecture
/
v.9
no.3
/
pp.333-344
/
2012
This paper proposes a system which recommends movies using information from social network services containing personal interest and taste. Method for establishing data is as follows. The system gathers movies' information from web sites and user's information from social network services such as Facebook and twitter. The data from social network services is categorized into six steps of emotion level for more accurate processing following users' emotional states. Gathered data will be established into vector space model which is ideal for analyzing and deducing the information with the system which is suggested in this paper. The existing similarity measurement method for movie recommendation is presentation of vector information about emotion level and similarity measuring method on the coordinates using Cosine measure. The deducing method suggested in this paper is two-phase arithmetic operation as follows. First, using general cosine measurement, the system establishes movies list. Second, using similarity measurement, system decides recommendable movie list by vector operation from the coordinates. After Comparative Experimental Study on the previous recommendation systems and new one, it turned out the new system from this study is more helpful than existing systems.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.1
/
pp.153-172
/
2022
In this study, the authors intend to analyze factors contributing to research performance using Backpropagation Neural Network and Support Vector Machine. The analyzing factors contributing to lecturer research performance start from defining the features. The next stage is to collect datasets based on defining features. Then transform the raw dataset into data ready to be processed. After the data is transformed, the next stage is the selection of features. Before the selection of features, the target feature is determined, namely research performance. The selection of features consists of Chi-Square selection (U), and Pearson correlation coefficient (CM). The selection of features produces eight factors contributing to lecturer research performance are Scientific Papers (U: 154.38, CM: 0.79), Number of Citation (U: 95.86, CM: 0.70), Conference (U: 68.67, CM: 0.57), Grade (U: 10.13, CM: 0.29), Grant (U: 35.40, CM: 0.36), IPR (U: 19.81, CM: 0.27), Qualification (U: 2.57, CM: 0.26), and Grant Awardee (U: 2.66, CM: 0.26). To analyze the factors, two data mining classifiers were involved, Backpropagation Neural Networks (BPNN) and Support Vector Machine (SVM). Evaluation of the data mining classifier with an accuracy score for BPNN of 95 percent, and SVM of 92 percent. The essence of this analysis is not to find the highest accuracy score, but rather whether the factors can pass the test phase with the expected results. The findings of this study reveal the factors that have a significant impact on research performance and vice versa.
Park, JinGyu;Kim, HwaYeon;Kim, Hyoung-Geun;Ahn, Tae-Ki;Yi, Hyunbean
Journal of the Korea Society of Computer and Information
/
v.23
no.7
/
pp.19-26
/
2018
This paper presents a structuring process of unstructured social network service (SNS) messages on rail services. We crawl messages about rail services posted on SNS and extract keywords indicating date and time, rail operating company, station name, direction, and rail service types from each message. Among them, the rail service types are classified by machine learning according to predefined rail service types, and the rest are extracted by regular expressions. Words are converted into vector representations using Word2Vec and a conventional Convolutional Neural Network (CNN) is used for training and classification. For performance measurement, our experimental results show a comparison with a TF-IDF and Support Vector Machine (SVM) approach. This structured information in the database and can be easily used for services for railway users.
Kim, Sang-Do;Yoon, Hee-Geun;Park, Seong-Bae;Park, Se-Young;Lee, Sang-Jo
Annual Conference on Human and Language Technology
/
2009.10a
/
pp.56-60
/
2009
오늘날 인터넷은 개인의 감정, 의견을 서로 공유할 수 있는 공간이 되고 있다. 하지만 인터넷에는 너무나 방대한 문서가 존재하기 때문에 다른 사용자들의 감정, 의견 정보를 개인의 의사 결정에 활용하기가 쉽지 않다. 최근 들어 감정이나 의견을 자동으로 추출하기 위한 연구가 활발하게 진행되고 있으며, 감정 분석에 관한 기존 연구들은 대부분 어구의 극성(polarity) 정보가 있는 감정 사전을 사용하고 있다. 하지만 인터넷에는 나날이 신조어가 새로 생기고 언어 파괴 현상이 자주 일어나기 때문에 사전에 기반한 방법은 한계가 있다. 본 논문은 감정 분석 문제를 긍정과 부정으로 구분하는 이진 분류 문제로 본다. 이진 분류 문제에서 탁월한 성능을 보이는 Support Vector Machines(SVM)을 사용하며, 문서들 간의 유사도 계산을 위해 문장의 부분 문자열을 비교하는 문자열 커널을 사용한다. 실험 결과, 실제 영화평에서 제안된 모델이 비교 대상으로 삼은 Bag of Words(BOW) 모델보다 안정적인 성능을 보였다.
Kim, Cho-Hee;So, Jae-Hong;Park, Hyeon-Gyun;Madusanka, Nuwan;Deekshitha, Prakash;Bhattacharjee, Subrata;Choi, Heung-Kook
Journal of Korea Multimedia Society
/
v.22
no.8
/
pp.832-843
/
2019
Prostate cancer is a high-risk with a high incidence and is a disease that occurs only in men. Accurate diagnosis of cancer is necessary as the incidence of cancer patients is increasing. Prostate cancer is also a disease that is difficult to predict progress, so it is necessary to predict in advance through prognosis. Therefore, in this paper, grade classification is attempted based on texture feature extraction. There are two main methods of classification: Uses One-way Analysis of Variance (ANOVA) to determine whether texture features are significant values, compares them with all texture features and then uses only one classification i.e. Benign versus. The second method consisted of more detailed classifications without using ANOVA for better analysis between different grades. Results of both these methods are compared and analyzed through the machine learning models such as Support Vector Machine and K-Nearest Neighbor. The accuracy of Benign versus Grade 4&5 using the second method with the best results was 90.0 percentage.
Infants express their physical and emotional needs to the outside world mainly through crying. However, most of parents find it challenging to understand the reason behind their babies' cries. Failure to correctly understand the cause of a baby' cry and take appropriate actions can affect the cognitive and motor development of newborns undergoing rapid brain development. In this paper, we propose an infant cry recognition system based on deep transfer learning to help parents identify crying babies' needs the same way a specialist would. The proposed system works by transforming the waveform of the cry signal into log-mel spectrogram, then uses the VGGish model pre-trained on AudioSet to extract a 128-dimensional feature vector from the spectrogram. Finally, a softmax function is used to classify the extracted feature vector and recognize the corresponding type of cry. The experimental results show that our method achieves a good performance exceeding 0.96 in precision and recall, and f1-score.
As the growth of performance of the computer and the development of the Internet are exponential, sharing and using the information illegally have also increased to the same proportion. In this paper, we proposed a novel method on the vector map data among digital contents. Vector map data are used for GIS, navigation and web-based services etc. We embedded watermark into the coordinate of the vector map data using bit operation and extracted the watermark. This method helps to protect the copyright of the vector map data. This watermarking method is a spatial domain method and it embeds the watermark within an allowable error. Our experiment shows that the watermark produced by this method is resistant to simplification and translation.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.1
/
pp.40-52
/
2020
In this paper, we consider a precoder design problem for multiuser interference channel. Most of the conventional schemes for precoder design utilize a signal-to-interference-plus-noise ratio (SINR) as a cost function. However, since the SINR metric of a desired transmitter-receiver pair is a function of precoding vectors of all transmitters in the multiuser interference channel, an analytic closed-form solution is not available for the precoding vector of a desired transmitter that maximizes the SINR metric. To eliminate coupling between the precoding vectors of all transmitters and to find a closed-form solution for the precoding vector of the desired transmitter, we use a signal-to-leakage-plus-noise ratio (SLNR) instead as a cost function because the SLNR at a transmitter is a function of the precoding vector of the desired transmitter only. In addition, channel estimation errors for undesired links are considered when designing the precoding vector because they are inevitable in a multiuser interference channel. In this case, we propose a design scheme for the precoding vector that is robust to the channel estimation error. In the proposed scheme, the precoding vector is designed to maximize the worst-case SLNR. Through computer simulation, we show that the proposed scheme has better performance than the conventional scheme in terms of SLNR, SINR, and sum rate of all users.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.