• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.031 seconds

A Method of Hand Recognition for Virtual Hand Control of Virtual Reality Game Environment (가상 현실 게임 환경에서의 가상 손 제어를 위한 사용자 손 인식 방법)

  • Kim, Boo-Nyon;Kim, Jong-Ho;Kim, Tae-Young
    • Journal of Korea Game Society
    • /
    • v.10 no.2
    • /
    • pp.49-56
    • /
    • 2010
  • In this paper, we propose a control method of virtual hand by the recognition of a user's hand in the virtual reality game environment. We display virtual hand on the game screen after getting the information of the user's hand movement and the direction thru input images by camera. We can utilize the movement of a user's hand as an input interface for virtual hand to select and move the object. As a hand recognition method based on the vision technology, the proposed method transforms input image from RGB color space to HSV color space, then segments the hand area using double threshold of H, S value and connected component analysis. Next, The center of gravity of the hand area can be calculated by 0 and 1 moment implementation of the segmented area. Since the center of gravity is positioned onto the center of the hand, the further apart pixels from the center of the gravity among the pixels in the segmented image can be recognized as fingertips. Finally, the axis of the hand is obtained as the vector of the center of gravity and the fingertips. In order to increase recognition stability and performance the method using a history buffer and a bounding box is also shown. The experiments on various input images show that our hand recognition method provides high level of accuracy and relatively fast stable results.

Filter-Bank Based Regularized Common Spatial Pattern for Classification of Motor Imagery EEG (동작 상상 EEG 분류를 위한 필터 뱅크 기반 정규화 공통 공간 패턴)

  • Park, Sang-Hoon;Kim, Ha-Young;Lee, David;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.587-594
    • /
    • 2017
  • Recently, motor imagery electroencephalogram(EEG) based Brain-Computer Interface(BCI) systems have received a significant amount of attention in various fields, including medicine and engineering. The Common Spatial Pattern(CSP) algorithm is the most commonly-used method to extract the features from motor imagery EEG. However, the CSP algorithm has limited applicability in Small-Sample Setting(SSS) situations because these situations rely on a covariance matrix. In addition, large differences in performance depend on the frequency bands that are being used. To address these problems, 4-40Hz band EEG signals are divided using nine filter-banks and Regularized CSP(R-CSP) is applied to individual frequency bands. Then, the Mutual Information-Based Individual Feature(MIBIF) algorithm is applied to the features of R-CSP for selecting discriminative features. Thereafter, selected features are used as inputs of the classifier Least Square Support Vector Machine(LS-SVM). The proposed method yielded a classification accuracy of 87.5%, 100%, 63.78%, 82.14%, and 86.11% in five subjects("aa", "al", "av", "aw", and "ay", respectively) for BCI competition III dataset IVa by using 18 channels in the vicinity of the motor area of the cerebral cortex. The proposed method improved the mean classification accuracy by 16.21%, 10.77% and 3.32% compared to the CSP, R-CSP and FBCSP, respectively The proposed method shows a particularly excellent performance in the SSS situation.

Analysis on the Contribution of FDOA Measurement Accuracy to the Performance of Combined TDOA/FDOA Localization Systems (TDOA/FDOA 복합 위치추정 시스템에서 FDOA 측정 정확도에 따른 추정 성능 기여도 분석)

  • Kim, Dong-Gyu;Kim, Yong-Hee;Han, Jin-Woo;Song, Kyu-Ha;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.88-96
    • /
    • 2014
  • In modern electronic warfare systems, the necessity of a more accurate estimation method based on non-AOA (arrival of angle) measurement, such as TDOA and FDOA, have been increased. The previous researches using single TDOA have been carried out in terms of not only the development of emitter location algorithms but also the enhancement of measurement accuracy. Recently, however, the combined TDOA/FDOA method is of considerable interest because it is able to estimate the velocity vector of a moving emitter and acquire a pair of TDOA and FDOA measurements from a single sensor pair. In this circumstance, it is needed to derive the required FDOA measurement accuracy in order that the TDOA/FDOA combined localization system outperforms the previous single TDOA localization systems. Therefore, we analyze the contribution of FDOA measurement accuracy to emitter location, then propose the criterion based on CRLB (Cramer-Rao lower bound). Simulations are included to examine the validity of the proposed criterion by using the Gauss-Newton algorithm.

Psychology analyzing system using spectrum component density ratio of EEG based on BCI-TAT (EEG 대역별 스펙트럼 활성 비를 활용한 BCI-TAT 기반 심리 분석 시스템)

  • Shin, Jeon-Hoon;Jin, Sang-Hyeon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.112-124
    • /
    • 2010
  • Studies that can find resolutions to problems of subjective psychiatric analysis must be performed and indeed they are in the process. However there still lies many problems in researches of mentality examination, which should be the foundation of finding potential resolutions. One of the biggest problems in the conventional system is that there are many different opinions by psychiatrists depending on their educations and experiences. There is no objective standard on the subjects and there is no effective psychiatric analysis method. Also, the characteristic of such examinations is that it cannot be applied to disabilities, foreigners and infants alyce the examination is ch examinconversation. The objective of this atudy is to standardize TAT(Thematic Apperception Test)analysiBallken index method so that subjective data from the examination can be excluded and the examination thus maklysithe examination objectified. Furthermore, objective result and patients' brain wave pattern is read with BCI(Brain Computer Interface) ch exaTherenvironment to Alsare it to brain wave characteristics vectors to reate brain-wave characteristics vector DB. Therefore, such DB can be utilize durlysithe examination and diagnosis to reate objective examination method and standardized diagnosis system. Thus, mentality examination can be performed only with brain-wave scans with BCI based TAT system.

Performance Analysis of Interference Cancellation Algorithms for an FM Based PCL System (FM 신호 기반 PCL 시스템에서 간섭 신호 제거 알고리즘의 성능 분석)

  • Park, Geun-Ho;Kim, Dong-Gyu;Kim, Ho Jae;Park, Jin-Oh;Lee, Won-Jin;Ko, Jae Heon;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.819-830
    • /
    • 2017
  • An FM radio based PCL system is a passive radar technique for detecting the multiple moving targets from FM radio signals and tracking the trajectories of the targets by calculating the cross-correlation function of direct-path signal and target echo signals. However, the interference signals are received from a surveillance channel, which is designed to receive the target echo signals. Because of this problem, the target echo signals are masked by the strong interference signals and this makes it difficult to detect the true targets from the cross-correlation function. Adaptive filters are known as effective methods for suppressing the interference signals but there is a problem to present their accurate performances in the PCL system because many literatures used the cross-correlation function and the ratio of input and output power as a measure of the performance analysis. In this paper, a performance analysis method is proposed to evaluate the performance of interference cancellation algorithms. By using the property that each component of the filter weight vector is adjusted to suppress the specific interference signal, a performance measure of the interference signal suppression is defined by a function of adaptive filter weights. Based on the proposed method, we compare the performance of the adaptive filters used in the PCL system. Simulation results show that the proposed method can be very effective for evaluating the performance of interference cancellation algorithms.

Impact of Word Embedding Methods on Performance of Sentiment Analysis with Machine Learning Techniques

  • Park, Hoyeon;Kim, Kyoung-jae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.8
    • /
    • pp.181-188
    • /
    • 2020
  • In this study, we propose a comparative study to confirm the impact of various word embedding techniques on the performance of sentiment analysis. Sentiment analysis is one of opinion mining techniques to identify and extract subjective information from text using natural language processing and can be used to classify the sentiment of product reviews or comments. Since sentiment can be classified as either positive or negative, it can be considered one of the general classification problems. For sentiment analysis, the text must be converted into a language that can be recognized by a computer. Therefore, text such as a word or document is transformed into a vector in natural language processing called word embedding. Various techniques, such as Bag of Words, TF-IDF, and Word2Vec are used as word embedding techniques. Until now, there have not been many studies on word embedding techniques suitable for emotional analysis. In this study, among various word embedding techniques, Bag of Words, TF-IDF, and Word2Vec are used to compare and analyze the performance of movie review sentiment analysis. The research data set for this study is the IMDB data set, which is widely used in text mining. As a result, it was found that the performance of TF-IDF and Bag of Words was superior to that of Word2Vec and TF-IDF performed better than Bag of Words, but the difference was not very significant.

Reliable multi-hop communication for structural health monitoring

  • Nagayama, Tomonori;Moinzadeh, Parya;Mechitov, Kirill;Ushita, Mitsushi;Makihata, Noritoshi;Ieiri, Masataka;Agha, Gul;Spencer, Billie F. Jr.;Fujino, Yozo;Seo, Ju-Won
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.481-504
    • /
    • 2010
  • Wireless smart sensor networks (WSSNs) have been proposed by a number of researchers to evaluate the current condition of civil infrastructure, offering improved understanding of dynamic response through dense instrumentation. As focus moves from laboratory testing to full-scale implementation, the need for multi-hop communication to address issues associated with the large size of civil infrastructure and their limited radio power has become apparent. Multi-hop communication protocols allow sensors to cooperate to reliably deliver data between nodes outside of direct communication range. However, application specific requirements, such as high sampling rates, vast amounts of data to be collected, precise internodal synchronization, and reliable communication, are quite challenging to achieve with generic multi-hop communication protocols. This paper proposes two complementary reliable multi-hop communication solutions for monitoring of civil infrastructure. In the first approach, termed herein General Purpose Multi-hop (GPMH), the wide variety of communication patterns involved in structural health monitoring, particularly in decentralized implementations, are acknowledged to develop a flexible and adaptable any-to-any communication protocol. In the second approach, termed herein Single-Sink Multi-hop (SSMH), an efficient many-to-one protocol utilizing all available RF channels is designed to minimize the time required to collect the large amounts of data generated by dense arrays of sensor nodes. Both protocols adopt the Ad-hoc On-demand Distance Vector (AODV) routing protocol, which provides any-to-any routing and multi-cast capability, and supports a broad range of communication patterns. The proposed implementations refine the routing metric by considering the stability of links, exclude functionality unnecessary in mostly-static WSSNs, and integrate a reliable communication layer with the AODV protocol. These customizations have resulted in robust realizations of multi-hop reliable communication that meet the demands of structural health monitoring.

Hand Motion Recognition Algorithm Using Skin Color and Center of Gravity Profile (피부색과 무게중심 프로필을 이용한 손동작 인식 알고리즘)

  • Park, Youngmin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.411-417
    • /
    • 2021
  • The field that studies human-computer interaction is called HCI (Human-computer interaction). This field is an academic field that studies how humans and computers communicate with each other and recognize information. This study is a study on hand gesture recognition for human interaction. This study examines the problems of existing recognition methods and proposes an algorithm to improve the recognition rate. The hand region is extracted based on skin color information for the image containing the shape of the human hand, and the center of gravity profile is calculated using principal component analysis. I proposed a method to increase the recognition rate of hand gestures by comparing the obtained information with predefined shapes. We proposed a method to increase the recognition rate of hand gestures by comparing the obtained information with predefined shapes. The existing center of gravity profile has shown the result of incorrect hand gesture recognition for the deformation of the hand due to rotation, but in this study, the center of gravity profile is used and the point where the distance between the points of all contours and the center of gravity is the longest is the starting point. Thus, a robust algorithm was proposed by re-improving the center of gravity profile. No gloves or special markers attached to the sensor are used for hand gesture recognition, and a separate blue screen is not installed. For this result, find the feature vector at the nearest distance to solve the misrecognition, and obtain an appropriate threshold to distinguish between success and failure.

Probing Sentence Embeddings in L2 Learners' LSTM Neural Language Models Using Adaptation Learning

  • Kim, Euhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.13-23
    • /
    • 2022
  • In this study we leveraged a probing method to evaluate how a pre-trained L2 LSTM language model represents sentences with relative and coordinate clauses. The probing experiment employed adapted models based on the pre-trained L2 language models to trace the syntactic properties of sentence embedding vector representations. The dataset for probing was automatically generated using several templates related to different sentence structures. To classify the syntactic properties of sentences for each probing task, we measured the adaptation effects of the language models using syntactic priming. We performed linear mixed-effects model analyses to analyze the relation between adaptation effects in a complex statistical manner and reveal how the L2 language models represent syntactic features for English sentences. When the L2 language models were compared with the baseline L1 Gulordava language models, the analogous results were found for each probing task. In addition, it was confirmed that the L2 language models contain syntactic features of relative and coordinate clauses hierarchically in the sentence embedding representations.

Deep Learning Similarity-based 1:1 Matching Method for Real Product Image and Drawing Image

  • Han, Gi-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.59-68
    • /
    • 2022
  • This paper presents a method for 1:1 verification by comparing the similarity between the given real product image and the drawing image. The proposed method combines two existing CNN-based deep learning models to construct a Siamese Network. After extracting the feature vector of the image through the FC (Fully Connected) Layer of each network and comparing the similarity, if the real product image and the drawing image (front view, left and right side view, top view, etc) are the same product, the similarity is set to 1 for learning and, if it is a different product, the similarity is set to 0. The test (inference) model is a deep learning model that queries the real product image and the drawing image in pairs to determine whether the pair is the same product or not. In the proposed model, through a comparison of the similarity between the real product image and the drawing image, if the similarity is greater than or equal to a threshold value (Threshold: 0.5), it is determined that the product is the same, and if it is less than or equal to, it is determined that the product is a different product. The proposed model showed an accuracy of about 71.8% for a query to a product (positive: positive) with the same drawing as the real product, and an accuracy of about 83.1% for a query to a different product (positive: negative). In the future, we plan to conduct a study to improve the matching accuracy between the real product image and the drawing image by combining the parameter optimization study with the proposed model and adding processes such as data purification.