• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.032 seconds

The Economic Security System in the Conditions of the Powers Transformation

  • Arefieva, Olena;Tulchynska, Svitlana;Popelo, Olha;Arefiev, Serhii;Tkachenko, Tetiana
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.35-42
    • /
    • 2021
  • In the article, the authors investigate the economic security system in the conditions of the powers transformation. It is substantiated that economic security acts as a certain system that includes components and at the same time acts as a subsystem of the highest order. It is determined that the economic security system of regions acting as a system has its subsystems, which include: production, financial, environmental, innovation, investment and social subsystems. The parameters of the economic security system include relative economic independence, economic stability and self-development of economic systems, and it is proved that an important feature of economic security in addition to its systemic nature is multi-vector. It is substantiated that the monitoring of ensuring the economic security system of the development of economic systems of different levels in the conditions of the powers transformation should contain the analysis of social, economic and ecological development of regions; spheres of possible dangers of the development of regional economic systems; the nature of the threats; the degree of the possibility of threats; time perspective of economic development threats; possible consequences of losses for economic entities; the impact of threats to the object of the economic entities' activity; possible asymmetry of economic development of regional economic entities. Possible threats as a consequence of the powers transformation have been identified. A PEST analysis of the impact of factors of different nature on economic security and the development of regional economic systems in the powers transformation is carried out. A recurrent ratio is proposed for the economic security system in the conditions of the powers transformation.

Market sentiment and its effect on real estate return: evidence from China Shenzhen

  • LI, ZHUO
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.243-251
    • /
    • 2022
  • In this paper, we propose a phenomenon that analyze the impact of market sentiment on China's real estate market through the perspective of behavioral economics. Previously, real estate market analyzation basically focus on some fundamental principles which include market price, monetary policies and income, etc. However, little research has explored market sentiment and its influence. By using principal components analysis (PCA), this study first creates buyer's sentiment and seller's sentiment to measure the heat of China's real estate market. Different from using traditional estimation method, the vector autoregressive model (VAR) is used to analyze how both sentiments affect real estate return. The overall results show that from unit root test and impulse response analyzation, the impact of seller's sentiment is positive to real estate market while buyer's sentiment is negative. At the same time, the higher seller's sentiment will have different influence on the housing market compared with the higher buyer's sentiment.

Implementation of Tactical Path-finding Integrated with Weight Learning (가중치 학습과 결합된 전술적 경로 찾기의 구현)

  • Yu, Kyeon-Ah
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.91-98
    • /
    • 2010
  • Conventional path-finding has focused on finding short collision-free paths. However, as computer games become more sophisticated, it is required to take tactical information like ambush points or lines of enemy sight into account. One way to make this information have an effect on path-finding is to represent a heuristic function of a search algorithm as a weighted sum of tactics. In this paper we consider the problem of learning heuristic to optimize path-finding based on given tactical information. What is meant by learning is to produce a good weight vector for a heuristic function. Training examples for learning are given by a game level-designer and will be compared with search results in every search level to update weights. This paper proposes a learning algorithm integrated with search for tactical path-finding. The perceptron-like method for updating weights is described and a simulation tool for implementing these is presented. A level-designer can mark desired paths according to characters' properties in the heuristic learning tool and then it uses them as training examples to learn weights and shows traces of paths changing along with weight learning.

Document Classification Methodology Using Autoencoder-based Keywords Embedding

  • Seobin Yoon;Namgyu Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.35-46
    • /
    • 2023
  • In this study, we propose a Dual Approach methodology to enhance the accuracy of document classifiers by utilizing both contextual and keyword information. Firstly, contextual information is extracted using Google's BERT, a pre-trained language model known for its outstanding performance in various natural language understanding tasks. Specifically, we employ KoBERT, a pre-trained model on the Korean corpus, to extract contextual information in the form of the CLS token. Secondly, keyword information is generated for each document by encoding the set of keywords into a single vector using an Autoencoder. We applied the proposed approach to 40,130 documents related to healthcare and medicine from the National R&D Projects database of the National Science and Technology Information Service (NTIS). The experimental results demonstrate that the proposed methodology outperforms existing methods that rely solely on document or word information in terms of accuracy for document classification.

Design and Implementation of Smart Self-Learning Aid: Micro Dot Pattern Recognition based Information Embedding Solution (스마트 학습지: 미세 격자 패턴 인식 기반의 지능형 학습 도우미 시스템의 설계와 구현)

  • Shim, Jae-Youen;Kim, Seong-Whan
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.346-349
    • /
    • 2011
  • In this paper, we design a perceptually invisible dot pattern layout and its recognition scheme, and we apply the recognition scheme into a smart self learning aid for interactive learning aid. To increase maximum information capacity and also increase robustness to the noises, we design a ECC (error correcting code) based dot pattern with directional vector indicator. To make a smart self-learning aid, we embed the micro dot pattern (20 information bit + 15 ECC bits + 9 layout information bit) using K ink (CMYK) and extract the dot pattern using IR (infrared) LED and IR filter based camera, which is embedded in the smart pen. The reason we use K ink is that K ink is a carbon based ink in nature, and carbon is easily recognized with IR even without light. After acquiring IR camera images for the dot patterns, we perform layout adjustment using the 9 layout information bit, and extract 20 information bits from 35 data bits which is composed of 20 information bits and 15 ECC bits. To embed and extract information bits, we use topology based dot pattern recognition scheme which is robust to geometric distortion which is very usual in camera based recognition scheme. Topology based pattern recognition traces next information bit symbols using topological distance measurement from the pivot information bit. We implemented and experimented with sample patterns, and it shows that we can achieve almost 99% recognition for our embedding patterns.

An Automatic Setting Method of Data Constraints for Cleansing Data Errors between Business Services (비즈니스 서비스간의 오류 정제를 위한 데이터 제약조건 자동 설정 기법)

  • Lee, Jung-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.161-171
    • /
    • 2009
  • In this paper, we propose an automatic method for setting data constraints of a data cleansing service, which is for managing the quality of data exchanged between composite services based on SOA(Service-Oriented Architecture) and enables to minimize human intervention during the process. Because it is impossible to deal with all kinds of real-world data, we focus on business data (i.e. costumer order, order processing) which are frequently used in services such as CRM(Customer Relationship Management) and ERP(Enterprise Resource Planning). We first generate an extended-element vector by extending semantics of data exchanged between composite services and then build a rule-based system for setting data constraints automatically using the decision tree learning algorithm. We applied this rule-based system into the data cleansing service and showed the automation rate over 41% by learning data from multiple registered services in the field of business.

Ensemble Design of Machine Learning Technigues: Experimental Verification by Prediction of Drifter Trajectory (앙상블을 이용한 기계학습 기법의 설계: 뜰개 이동경로 예측을 통한 실험적 검증)

  • Lee, Chan-Jae;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.57-67
    • /
    • 2018
  • The ensemble is a unified approach used for getting better performance by using multiple algorithms in machine learning. In this paper, we introduce boosting and bagging, which have been widely used in ensemble techniques, and design a method using support vector regression, radial basis function network, Gaussian process, and multilayer perceptron. In addition, our experiment was performed by adding a recurrent neural network and MOHID numerical model. The drifter data used for our experimental verification consist of 683 observations in seven regions. The performance of our ensemble technique is verified by comparison with four algorithms each. As verification, mean absolute error was adapted. The presented methods are based on ensemble models using bagging, boosting, and machine learning. The error rate was calculated by assigning the equal weight value and different weight value to each unit model in ensemble. The ensemble model using machine learning showed 61.7% improvement compared to the average of four machine learning technique.

Cell Images Classification using Deep Convolutional Autoencoder of Unsupervised Learning (비지도학습의 딥 컨벌루셔널 자동 인코더를 이용한 셀 이미지 분류)

  • Vununu, Caleb;Park, Jin-Hyeok;Kwon, Oh-Jun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.942-943
    • /
    • 2021
  • The present work proposes a classification system for the HEp-2 cell images using an unsupervised deep feature learning method. Unlike most of the state-of-the-art methods in the literature that utilize deep learning in a strictly supervised way, we propose here the use of the deep convolutional autoencoder (DCAE) as the principal feature extractor for classifying the different types of the HEp-2 cell images. The network takes the original cell images as the inputs and learns to reconstruct them in order to capture the features related to the global shape of the cells. A final feature vector is constructed by using the latent representations extracted from the DCAE, giving a highly discriminative feature representation. The created features will be fed to a nonlinear classifier whose output will represent the final type of the cell image. We have tested the discriminability of the proposed features on one of the most popular HEp-2 cell classification datasets, the SNPHEp-2 dataset and the results show that the proposed features manage to capture the distinctive characteristics of the different cell types while performing at least as well as the actual deep learning based state-of-the-art methods.

MF-DCCA ANALYSIS OF INVESTOR SENTIMENT AND FINANCIAL MARKET BASED ON NLP ALGORITHM

  • RUI ZHANG;CAIRANG JIA;JIAN WANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.28 no.3
    • /
    • pp.71-87
    • /
    • 2024
  • In this paper, we adopt the MF-DCCA (Multifractal Detrended Cross-Correlation Analysis) method to study the nonlinear correlation between the returns of financial stock markets and investors' sentiment index (SI). The return series of Shanghai Securities Composite Index (SSEC) of China, Shenzhen Securities Component Index (SZI) of China, Nikkei 225 Index (N225) of Japan, and Standard & Poor's 500 Index (S&P500) of the United States are adopted. Firstly, we preliminarily analyze the correlation between SSEC and SI through the Pearson correlation coefficient. In addition, by MF-DCCA, we observe a power-law correlation between investors' sentiment index and SSEC stock market returns, with a significant multifractal correlation. Besides, SI series and SSEC return series have positive persistence. We compare the differences in multifractal cross-correlation between SI and stock return sequences in different markets. We found that the values of SZI-SI in terms of cross-correlation persistence and cross-correlation strength are relatively close to those of SSEC-SI, while the Hxy(2), ∆Hxy, and ∆αxy of N225-SI and S&P500 are much smaller than those of SSEC-SI and SZI-SI. This reason is related to the fact that the investors' sentiment index originated from the Shanghai Composite Index Tieba. The SI is obtained through natural language processing method. Finally, we study the rolling of Hxy(2) and ∆αxy. Results indicate that the macroeconomic environment may cause fluctuations in two sequences of Hxy(2) and ∆αxy.

Optimal supervised LSA method using selective feature dimension reduction (선택적 자질 차원 축소를 이용한 최적의 지도적 LSA 방법)

  • Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.47-60
    • /
    • 2010
  • Most of the researches about classification usually have used kNN(k-Nearest Neighbor), SVM(Support Vector Machine), which are known as learn-based model, and Bayesian classifier, NNA(Neural Network Algorithm), which are known as statistics-based methods. However, there are some limitations of space and time when classifying so many web pages in recent internet. Moreover, most studies of classification are using uni-gram feature representation which is not good to represent real meaning of words. In case of Korean web page classification, there are some problems because of korean words property that the words have multiple meanings(polysemy). For these reasons, LSA(Latent Semantic Analysis) is proposed to classify well in these environment(large data set and words' polysemy). LSA uses SVD(Singular Value Decomposition) which decomposes the original term-document matrix to three different matrices and reduces their dimension. From this SVD's work, it is possible to create new low-level semantic space for representing vectors, which can make classification efficient and analyze latent meaning of words or document(or web pages). Although LSA is good at classification, it has some drawbacks in classification. As SVD reduces dimensions of matrix and creates new semantic space, it doesn't consider which dimensions discriminate vectors well but it does consider which dimensions represent vectors well. It is a reason why LSA doesn't improve performance of classification as expectation. In this paper, we propose new LSA which selects optimal dimensions to discriminate and represent vectors well as minimizing drawbacks and improving performance. This method that we propose shows better and more stable performance than other LSAs' in low-dimension space. In addition, we derive more improvement in classification as creating and selecting features by reducing stopwords and weighting specific values to them statistically.

  • PDF