• Title/Summary/Keyword: vasculogenesis

Search Result 30, Processing Time 0.024 seconds

Effects of lycopene on number and function of human peripheral blood endothelial progenitor cells cultivated with high glucose

  • Zeng, Yao-Chi;Mu, Gui-Ping;Huang, Shu-Fen;Zeng, Xue-Hui;Cheng, Hong;Li, Zhong-Xin
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.368-376
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: The objectives of this study were to investigate the effects of lycopene on the migration, adhesion, tube formation capacity, and p38 mitogen-activated protein kinase (p38 MAPK) activity of endothelial progenitor cells (EPCs) cultivated with high glucose (HG) and as well as explore the mechanism behind the protective effects of lycopene on peripheral blood EPCs. MATERIALS/METHODS: Mononuclear cells were isolated from human peripheral blood by Ficoll density gradient centrifugation. EPCs were identified after induction of cellular differentiation. Third generation EPCs were incubated with HG (33 mmol/L) or 10, 30, and $50{\mu}g/mL$ of lycopene plus HG. MTT assay and flow cytometry were performed to assess proliferation and apoptosis of EPCs. EPC migration was assessed by MTT assay with a modified boyden chamber. Adhesion assay was performed by replating EPCs on fibronectin-coated dishes, after which adherent cells were counted. In vitro vasculogenesis activity was assayed by Madrigal network formation assay. Western blotting was performed to analyze protein expression of both phosphorylated and non-phosphorylated p38 MAPK. RESULTS: The proliferation, migration, adhesion, and in vitro vasculogenesis capacity of EPCs treated with 10, 30, and $50{\mu}g/mL$ of lycopene plus HG were all significantly higher comapred to the HG group (P < 0.05). Rates of apoptosis were also significantly lower than that of the HG group. Moreover, lycopene blocked phosphorylation of p38 MAPK in EPCs (P < 0.05). To confirm the causal relationship between MAPK inhibition and the protective effects of lycopene against HG-induced cellular injury, we treated cells with SB203580, a phosphorylation inhibitor. The inhibitor significantly inhibited HG-induced EPC injury. CONCLUSIONS: Lycopene promotes proliferation, migration, adhesion, and in vitro vasculogenesis capacity as well as reduces apoptosis of EPCs. Further, the underlying molecular mechanism of the protective effects of lycopene against HG-induced EPC injury may involve the p38 MAPK signal transduction pathway. Specifically, lycopene was shown to inhibit HG-induced EPC injury by inhibiting p38 MAPKs.

Runx3 inhibits endothelial progenitor cell differentiation and function via suppression of HIF-1α activity

  • SO-YUN CHOO;SOO-HYUN YOON;DONG-JIN LEE;SUN HEE LEE;KANG LI;IN HYE KOO;WOOIN LEE;SUK-CHUL BAE;YOU MIE LEE
    • International Journal of Oncology
    • /
    • v.54 no.4
    • /
    • pp.1327-1336
    • /
    • 2019
  • Endothelial progenitor cells (EPCs) are bone marrow (BM)-derived progenitor cells that can differentiate into mature endothelial cells, contributing to vasculogenesis in the blood vessel formation process. Runt-related transcription factor 3 (RUNX3) belongs to the Runt domain family and is required for the differentiation of specific immune cells and neurons. The tumor suppressive role of RUNX3, via the induction of apoptosis and cell cycle arrest in a variety of cancers, and its deletion or frequent silencing by epigenetic mechanisms have been studied extensively; however, its role in the differentiation of EPCs is yet to be investigated. Therefore, in the present study, adult BM-derived hematopoietic stem cells (HSCs) were isolated from Runx3 heterozygous (Rx3+/-) or wild-type (WT) mice. The differentiation of EPCs from the BM-derived HSCs of Rx3+/- mice was found to be significantly increased compared with those of the WT mice, as determined by the number of small or large colony-forming units. The migration and tube formation abilities of Rx3+/- EPCs were also observed to be significantly increased compared with those of WT EPCs. Furthermore, the number of circulating EPCs, defined as CD34+/vascular endothelial growth factor receptor 2 (VEGFR2)+ cells, was also significantly increased in Rx3+/- mice. Hypoxia-inducible factor (HIF)-1α was upregulated in Rx3+/- EPCs compared with WT EPCs, even under normoxic conditions. Furthermore, in a hindlimb ischemic mouse models, the recovery of blood flow was observed to be highly stimulated in Rx3+/- mice compared with WT mice. Also, in a Lewis lung carcinoma cell allograft model, the tumor size in Rx3+/- mice was significantly larger than that in WT mice, and the EPC cell population (CD34+/VEGFR2+ cells) recruited to the tumor was greater in the Rx3+/- mice compared with the WT mice. In conclusion, the present study revealed that Runx3 inhibits vasculogenesis via the inhibition of EPC differentiation and functions via the suppression of HIF-1α activity.

Hypoxia-Induced Endothelial Progenitor Cell Function Is Blunted in Angiotensinogen Knockout Mice

  • Choi, Jin-Hwa;Nguyen, Minh-Phuong;Lee, Dongjin;Oh, Goo-Taeg;Lee, You-Mie
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.487-496
    • /
    • 2014
  • Angiotensinogen (AGT), the precursor of angiotensin I, is known to be involved in tumor angiogenesis and associated with the pathogenesis of coronary atherosclerosis. This study was undertaken to determine the role played by AGT in endothelial progenitor cells (EPCs) in tumor progression and metastasis. It was found that the number of EPC colonies formed by AGT heterozygous knockout ($AGT^{+/-}$) cells was less than that formed by wild-type (WT) cells, and that the migration and tube formation abilities of $AGT^{+/-}$ EPCs were significantly lower than those of WT EPCs. In addition, the gene expressions of vascular endothelial growth factor (VEGF), Flk1, angiopoietin (Ang)-1, Ang-2, Tie-2, stromal derived factor (SDF)-1, C-X-C chemokine receptor type 4 (CXCR4), and of endothelial nitric oxide synthase (eNOS) were suppressed in $AGT^{+/-}$ EPCs. Furthermore, the expressions of hypoxia-inducible factor (HIF)-$1{\alpha}$and $-2{\alpha}$ were downregulated in $AGT^{+/-}$ early EPCs under hypoxic conditions, suggesting a blunting of response to hypoxia. Moreover, the activation of Akt/eNOS signaling pathways induced by VEGF, epithelial growth factor (EGF), or SDF-$1{\alpha}$ were suppressed in $AGT^{+/-}$ EPCs. In $AGT^{+/-}$ mice, the incorporation of EPCs into the tumor vasculature was significantly reduced, and lung tumor growth and melanoma metastasis were attenuated. In conclusion, AGT is required for hypoxia-induced vasculogenesis.

Vascular Aspects of Bronchopulmonary Dysplasia (기관지폐형성이상의 혈관적 측면)

  • Cho, Su-Jin
    • Neonatal Medicine
    • /
    • v.18 no.2
    • /
    • pp.177-181
    • /
    • 2011
  • Bronchopulmonary dysplasia (BPD) is characterized by arrest of vascular and alveolar development in premature infants. Recent advances in neonatology have increased the survival of immature babies. Consequently, the prevalence of BPD is increasing. Animal studies and autopsy findings of BPD have demonstrated interruption in vascular development and reversal of lung injury through promotion of vasculogenesis. Normal lung development is driven by temporal and spatial specific growth factors and cellto-cell signaling in vascular development. Lung injury through various pathways causes disruption in this complex interactive process and results in aberrant vascular development and subsequent BPD. By understanding the regulation of vascular growth of the lung, it would be possible to find new targets in the treatment and prevention of BPD in premature infants.

Sildenafil Citrate Induces Migration of Mouse Aortic Endothelial Cells and Proteinase Secretion

  • Kim, Young-Il;Oh, In-Suk;Park, Seung-Moon;Kim, Hwan-Gyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.402-407
    • /
    • 2006
  • Vascular endothelial cells release proteinases that degrade the extracellular matrix (ECM), thus enabling cell migration during angiogenesis and vasculogenesis. Sildenafil citrate stimulates the nitric oxide-cyclic guanosine monophosphate pathway through inhibition of phosphodiesterase type V (PDE5). In this report, we examined the mechanisms underlying sildenafil citrate-induced cell migration using cultured mouse aortic endothelial cells (MAECs). Sildenafil citrate induced migration and proteinase secretion by murine endothelial cells. Sildenafil citrate induced the secretion of matrix metalloproteinase-2 (MMP-2) and MMP-9, which is inhibited by $NF-{\kappa}B$ inhibitors. Sildenafil citrate also induced the secretion of plasmin, which is inhibited by PI 3'-kinase inhibitors. It is suggested that sildenafil citrate-induced migrating activity in endothelial cells may be accomplished by increased secretion of proteinases.

Anti-angiogenic activity of conjugated linoleic acid on the basic fibroblast growth factor-induced angiogenesis

  • Moon, Eun-Joung;Lee, You-Mie;Kim, Kyu-Won
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.337.2-337.2
    • /
    • 2002
  • Conjugated linoleic acid (CLA) is a potent inhibitor of mammary carcinogenesis. Cancer cells produce various angiogenic factors which stimulate host vascular endothelial cell mitogenesis and chemotaxis for their growth and metastasis. Basic fibroblast growth factor (bFGF) is a potent angiogenic factor that is expressed in many tumors. In this study. we found that CLA decreased bFGF-induced endothelial cell proliferation and DNA synthesis in a dose-dependent manner. However, CLA did not inhibit endothelial cell migration. Furthermore CLA showed a potent inhibitory effect on embryonic vasculogenesis and bF GF-induced angiogenesis in vivo. Collectively. these results suggest that CLA selectively inhibis the active proliferating endothelial edll induced by bFGF. which may explain its anti-carcinogenix properties in vivo.

  • PDF

A Review of the Current State and Future Directions for Management of Scalp and Facial Vascular Malformations

  • Emma Hartman;Daniel M. Balkin;Alfred Pokmeng See
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.3
    • /
    • pp.315-325
    • /
    • 2024
  • Vascular malformations are structural abnormalities that are thought to result from errors in vasculogenesis and angiogenesis during embryogenesis. Vascular malformations of the scalp present unique management challenges due to aesthetic and functional implications. This review examines the pathophysiology, clinical presentation, and management techniques for six common types of vascular malformations of the face and scalp : infantile hemangioma, capillary malformations, venous malformations, lymphatic malformations, arteriovenous malformations, and arteriovenous fistulas. These lesions range from common to rare, and have very different natural histories and management paradigms. There has been increasing understanding of the molecular pathways that are altered in association with these vascular lesions and these molecular targets may represent novel strategies of treating lesions that have historically been approached from a structural perspective only.

Expression and Purification of Recombinant Human Angiopoictin-2 and Its Analog in Chinese Hamster Ovary Cells

  • Hwang, Su-Jeong;Kim, In-Jun;Go, Gyu-Yeong;Lee, Gyun-Min
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.459-462
    • /
    • 2001
  • Angiopoietin-2 (Ang2) is a naturally occurring antagonist for angiopoietin-l (Angl) and its Tie2 receptor during vasculogenesis, Although angiopoietins have been expressed in several mammalian cell lines, their expression levels are low. Recombinant Chinese hamster ovary (CHO) cell lines expressing a high level of human Ang2 or its analog, human $Ang2_{443}$, with an amino-terminal FLAG-tag were constructed by transfecting the expression vectors into dhfr-deficient CHO cells and subsequent gene amplification in medium containing stepwise increments in methotrexate level. Secreted Ang2 or human $Ang2_{443}$ were purified from the cultured medium using an anti-FLAG- agarose affinity chromatography, The purified Ang2 and $Ang2_{443}$ migrated on SOS-PAGE as a broad band, characteristic of glycosylated protein. Their biological activity in vitro was demonstrated in a serum deprivation-induced apoptosis assay. Ang2 at high concentration, like AngI, can be an apoptosis survival factor for endothelial cells through the activation of the Tie2 receptor.

  • PDF