DOI QR코드

DOI QR Code

Hypoxia-Induced Endothelial Progenitor Cell Function Is Blunted in Angiotensinogen Knockout Mice

  • Choi, Jin-Hwa (National Basic Research Laboratory of Vascular Homeostasis Regulation, College of Pharmacy, Kyungpook National University) ;
  • Nguyen, Minh-Phuong (National Basic Research Laboratory of Vascular Homeostasis Regulation, College of Pharmacy, Kyungpook National University) ;
  • Lee, Dongjin (National Basic Research Laboratory of Vascular Homeostasis Regulation, College of Pharmacy, Kyungpook National University) ;
  • Oh, Goo-Taeg (Department of Life Science, Ewha University) ;
  • Lee, You-Mie (National Basic Research Laboratory of Vascular Homeostasis Regulation, College of Pharmacy, Kyungpook National University)
  • Received : 2014.05.09
  • Accepted : 2014.06.05
  • Published : 2014.06.30

Abstract

Angiotensinogen (AGT), the precursor of angiotensin I, is known to be involved in tumor angiogenesis and associated with the pathogenesis of coronary atherosclerosis. This study was undertaken to determine the role played by AGT in endothelial progenitor cells (EPCs) in tumor progression and metastasis. It was found that the number of EPC colonies formed by AGT heterozygous knockout ($AGT^{+/-}$) cells was less than that formed by wild-type (WT) cells, and that the migration and tube formation abilities of $AGT^{+/-}$ EPCs were significantly lower than those of WT EPCs. In addition, the gene expressions of vascular endothelial growth factor (VEGF), Flk1, angiopoietin (Ang)-1, Ang-2, Tie-2, stromal derived factor (SDF)-1, C-X-C chemokine receptor type 4 (CXCR4), and of endothelial nitric oxide synthase (eNOS) were suppressed in $AGT^{+/-}$ EPCs. Furthermore, the expressions of hypoxia-inducible factor (HIF)-$1{\alpha}$and $-2{\alpha}$ were downregulated in $AGT^{+/-}$ early EPCs under hypoxic conditions, suggesting a blunting of response to hypoxia. Moreover, the activation of Akt/eNOS signaling pathways induced by VEGF, epithelial growth factor (EGF), or SDF-$1{\alpha}$ were suppressed in $AGT^{+/-}$ EPCs. In $AGT^{+/-}$ mice, the incorporation of EPCs into the tumor vasculature was significantly reduced, and lung tumor growth and melanoma metastasis were attenuated. In conclusion, AGT is required for hypoxia-induced vasculogenesis.

Keywords

References

  1. Aghila Rani, K.G., and Kartha, C.C. (2010). Effects of epidermal growth factor on proliferation and migration of cardiospherederived cells expanded from adult human heart. Growth Factors 28, 157-165. https://doi.org/10.3109/08977190903512628
  2. Aicher, A., Heeschen, C., Mildner-Rihm, C., Urbich, C., Ihling, C., Technau-Ihling, K., Zeiher, A.M., and Dimmeler, S. (2003). Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat. Med. 9, 1370-1376. https://doi.org/10.1038/nm948
  3. Akita, T., Murohara, T., Ikeda, H., Sasaki, K., Shimada, T., Egami, K., and Imaizumi, T. (2003). Hypoxic preconditioning augments efficacy of human endothelial progenitor cells for therapeutic neovascularization. Lab. Invest. 83, 65-73. https://doi.org/10.1097/01.LAB.0000050761.67879.E4
  4. Anandanadesan, R., Gong, Q., Chipitsyna, G., Witkiewicz, A., Yeo, C.J., and Arafat, H.A. (2008). Angiotensin II induces vascular endothelial growth factor in pancreatic cancer cells through an angiotensin II type 1 receptor and ERK1/2 signaling. J. Gastrointest. Surg. 12, 57-66. https://doi.org/10.1007/s11605-007-0403-9
  5. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., and Isner, J.M. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964-967. https://doi.org/10.1126/science.275.5302.964
  6. Asahara, T., Takahashi, T., Masuda, H., Kalka, C., Chen, D., Iwaguro, H., Inai, Y., Silver, M., and Isner, J.M. (1999). VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 18, 3964-3972. https://doi.org/10.1093/emboj/18.14.3964
  7. Babic, A.M., Kireeva, M.L., Kolesnikova, T.V., and Lau, L.F. (1998). CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc. Natl. Acad. Sci. USA 95, 6355-6360. https://doi.org/10.1073/pnas.95.11.6355
  8. Ceradini, D.J., Kulkarni, A.R., Callaghan, M.J., Tepper, O.M., Bastidas, N., Kleinman, M.E., Capla, J.M., Galiano, R.D., Levine, J.P., and Gurtner, G.C. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858-864. https://doi.org/10.1038/nm1075
  9. Chen, N., Chen, C.C., and Lau, L.F. (2000). Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6beta 1 and cell surface heparan sulfate proteoglycans. J. Biol. Chem. 275, 24953-24961. https://doi.org/10.1074/jbc.M003040200
  10. Chen, J., Xiao, X., Chen, S., Zhang, C., Chen, J., Yi, D., Shenoy, V., Raizada, M.K., Zhao, B., and Chen, Y. (2013). Angiotensin-converting enzyme 2 priming enhances the function of endothelial progenitor cells and their therapeutic efficacy. Hypertension 61, 681-689. https://doi.org/10.1161/HYPERTENSIONAHA.111.00202
  11. Clapp, C., Thebault, S., Jeziorski, M.C., and Martinez De La Escalera, G. (2009). Peptide hormone regulation of angiogenesis. Physiol. Rev. 89, 1177-1215. https://doi.org/10.1152/physrev.00024.2009
  12. David, S., Kumpers, P., Lukasz, A., Kielstein, J.T., Haller, H., and Fliser, D. (2009). Circulating angiopoietin-2 in essential hypertension: relation to atherosclerosis, vascular inflammation, and treatment with olmesartan/pravastatin. J. Hypertens. 27, 1641-1647. https://doi.org/10.1097/HJH.0b013e32832be575
  13. Dome, B., Timar, J., Dobos, J., Meszaros, L., Raso, E., Paku, S., Kenessey, I., Ostoros, G., Magyar, M., Ladanyi, A., et al. (2006). Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res. 66, 7341-7347. https://doi.org/10.1158/0008-5472.CAN-05-4654
  14. Fadini, G.P., Losordo, D., and Dimmeler, S. (2012). Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ. Res. 110, 624-637. https://doi.org/10.1161/CIRCRESAHA.111.243386
  15. Fiedler, U., and Augustin, H.G. (2006). Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol. 27, 552-558. https://doi.org/10.1016/j.it.2006.10.004
  16. Forte, P., Copland, M., Smith, L.M., Milne, E., Sutherland, J., and Benjamin, N. (1997). Basal nitric oxide synthesis in essential hypertension. Lancet 349, 837-842. https://doi.org/10.1016/S0140-6736(96)07631-3
  17. Fu, G.S., Zheng, H., Dai, T., and Huang, H. (2007). Migration of endothelial progenitor cells mediated by stromal cell-derived Factor-1 alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. J. Cardiovasc. Pharmacol. 50, 274-280. https://doi.org/10.1097/FJC.0b013e318093ec8f
  18. Furuya, M., Ishida, J., Inaba, S., Kasuya, Y., Kimura, S., Nemori, R., and Fukamizu, A. (2008). Impaired placental neovascularization in mice with pregnancy-associated hypertension. Lab. Invest. 88, 416-429. https://doi.org/10.1038/labinvest.2008.7
  19. Genain, C., Bouhnik, J., Tewksbury, D., Corvol, P., and Menard, J. (1984). Characterization of plasma and cerebrospinal fluid human angiotensinogen and des-angiotensin I-angiotensinogen by direct radioimmunoassay. J. Clin. Endocrinol. Metab. 59, 478-484. https://doi.org/10.1210/jcem-59-3-478
  20. Giannotti, G., Doerries, C., Mocharla, P.S., Mueller, M.F., Bahlmann, F.H., Horvath, T., Jiang, H., Sorrentino, S.A., Steenken, N., Manes, C., et al. (2010). Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension: relation to endothelial dysfunction. Hypertension 55, 1389-1397. https://doi.org/10.1161/HYPERTENSIONAHA.109.141614
  21. Huang, P.L., Huang, Z., Mashimo, H., Bloch, K.D., Moskowitz, M.A., Bevan, J.A., and Fishman, M.C. (1995). Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377, 239-242. https://doi.org/10.1038/377239a0
  22. Hur, J., Yang, H.M., Yoon, C.H., Lee, C.S., Park, K.W., Kim, J.H., Kim, T.Y., Kim, J.Y., Kang, H.J., Chae, I.H., et al. (2007). Identifiation of a novel role of T cells in postnatal vasculogenesis: characterization of endothelial progenitor cell colonies. Circuation 116, 1671-1682.
  23. Igreja, C., Courinha, M., Cachaco, A.S., Pereira, T., Cabecadas, J., da Silva, M.G., and Dias, S. (2007). Characterization and clinical relevance of circulating and biopsy-derived endothelial progenitor cells in lymphoma patients. Haematologica 92, 469-477. https://doi.org/10.3324/haematol.10723
  24. Ishigami, T., Umemura, S., Iwamoto, T., Tamura, K., Hibi, K., Yamaguchi, S., Nyuui, N., Kimura, K., Miyazaki, N., and Ishii, M. (1995). Molecular variant of angiotensinogen gene is associated with coronary atherosclerosis. Circulation 91, 951-954. https://doi.org/10.1161/01.CIR.91.4.951
  25. Jung, S.Y., Choi, J.H., Kwon, S.M., Masuda, H., Asahara, T., and Lee, Y.M. (2012). Decursin inhibits vasculogenesis in early tumor progression by suppression of endothelial progenitor cell differentiation and function. J. Cell. Biochem. 113, 1478-1487.
  26. Kaji, K., Yoshiji, H., Ikenaka, Y., Noguchi, R., Aihara, Y., Shirai, Y., Douhara, A., and Fukui, H. (2012). Possible involvement of angiogenesis in chronic liver diseases: interaction among renin-angiotensin-aldosterone system, insulin resistance and oxidative stress. Curr. Med. Chem. 19, 1889-1898. https://doi.org/10.2174/092986712800099848
  27. Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W.M., Silver, M., Kearney, M., Li, T., Isner, J.M., and Asahara, T. (2000). Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl. Acad. Sci. USA 97, 3422-3427. https://doi.org/10.1073/pnas.97.7.3422
  28. Kim, H.S., Krege, J.H., Kluckman, K.D., Hagaman, J.R., Hodgin, J.B., Best, C.F., Jennette, J.C., Coffman, T.M., Maeda, N., and Smithies, O. (1995). Genetic control of blood pressure and the angiotensinogen locus. Proc. Natl. Acad. Sci. USA 92, 2735-2739. https://doi.org/10.1073/pnas.92.7.2735
  29. Kim, M.S., Lee, C.S., Hur, J., Cho, H.J., Jun, S.I., Kim, T.Y., Lee, S.W., Suh, J.W., Park, K.W., Lee, H.Y., et al. (2009). Priming with angiopoietin-1 augments the vasculogenic potential of the peripheral blood stem cells mobilized with granulocyte colony-stimulating factor through a novel Tie2/Ets-1 pathway. Circuation 120, 2240-2250.
  30. Kobori, H., Nangaku, M., Navar, L.G., and Nishiyama, A. (2007). The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol. Rev. 59, 251-287. https://doi.org/10.1124/pr.59.3.3
  31. Kugathasan, L., Ray, J.B., Deng, Y., Rezaei, E., Dumont, D.J., and Stewart, D.J. (2009). The angiopietin-1-Tie2 pathway prevents rather than promotes pulmonary arterial hypertension in transgenic mice. J. Exp. Med. 206, 2221-2234. https://doi.org/10.1084/jem.20090389
  32. Kwon, S.M., Lee, Y.K., Yokoyama, A., Jung, S.Y., Masuda, H., Kawamoto, A., Lee, Y.M., and Asahara, T. (2011). Differential activity of bone marrow hematopoietic stem cell subpopulations for EPC development and ischemic neovascularization. J. Mol. Cell. Cardiol. 51, 308-317. https://doi.org/10.1016/j.yjmcc.2011.04.007
  33. Lee, S.P., Youn, S.W., Cho, H.J., Li, L., Kim, T.Y., Yook, H.S., Chung, J.W., Hur, J., Yoon, C.H., Park, K.W., et al. (2006). Integrin-linked kinase, a hypoxia-responsive molecule, controls postnatal vasculogenesis by recruitment of endothelial progenitor cells to ischemic tissue. Circulation 114, 150-159. https://doi.org/10.1161/CIRCULATIONAHA.105.595918
  34. Lee, S.W., Kim, W.J., Jun, H.O., Choi, Y.K., and Kim, K.W. (2009). Angiopoietin-1 reduces vascular endothelial growth factor-induced brain endothelial permeability via upregulation of ZO-2. Int. J. Mol. Med. 23, 279-284.
  35. Li, B., Sharpe, E.E., Maupin, A.B., Teleron, A.A., Pyle, A.L., Carmeliet, P., and Young, P.P. (2006). VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J. 20, 1495-1497. https://doi.org/10.1096/fj.05-5137fje
  36. Mandriota, S.J., and Pepper, M.S. (1998). Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ. Res. 83, 852-859. https://doi.org/10.1161/01.RES.83.8.852
  37. Marsboom, G., Pokreisz, P., Gheysens, O., Vermeersch, P., Gillijns, H., Pellens, M., Liu, X., Collen, D., and Janssens, S. (2008). Sustained endothelial progenitor cell dysfunction after chronic hypoxia-induced pulmonary hypertension. Stem Cells 26, 1017-1026. https://doi.org/10.1634/stemcells.2007-0562
  38. Masuda, H., Alev, C., Akimaru, H., Ito, R., Shizuno, T., Kobori, M., Horii, M., Ishihara, T., Isobe, K., Isozaki, M., et al. (2011). Methodological development of a clonogenic assay to determine endothelial progenitor cell potential. Circ. Res. 109, 20-37. https://doi.org/10.1161/CIRCRESAHA.110.231837
  39. Mendez, G.P., Klock, C., and Nose, V. (2011). Juxtaglomerular cell tumor of the kidney: case report and differential diagnosis with emphasis on pathologic and cytopathologic features. Int. J. Surg. Pathol. 19, 93-98. https://doi.org/10.1177/1066896908329413
  40. Murohara, T., Asahara, T., Silver, M., Bauters, C., Masuda, H., Kalka, C., Kearney, M., Chen, D., Symes, J.F., Fishman, M.C., et al. (1998). Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J. Clin. Invest. 101, 2567-2578. https://doi.org/10.1172/JCI1560
  41. Naik, R.P., Jin, D., Chuang, E., Gold, E.G., Tousimis, E.A., Moore, A.L., Christos, P.J., de Dalmas, T., Donovan, D., Rafii, S., et al. (2008). Circulating endothelial progenitor cells correlate to stage in patients with invasive breast cancer. Breast Cancer Res. Treat. 107, 133-138. https://doi.org/10.1007/s10549-007-9519-6
  42. Obi, S., Yamamoto, K., Shimizu, N., Kumagaya, S., Masumura, T., Sokabe, T., Asahara, T., and Ando, J. (2009). Fluid shear stress induces arterial differentiation of endothelial progenitor cells. J. Appl. Physiol. 106, 203-211. https://doi.org/10.1152/japplphysiol.00197.2008
  43. Pereira, R.M., Michalkiewicz, E., Sandrini, F., Figueiredo, B.C., Pianovski, M., Franca, S.N., Boguszewski, M.C., Costa, O., Cat, I., Lacerda Filho, L., et al. (2004). [Childhood adrenocortical tumors]. Arq. Bras. Endocrinol. Metabol. 48, 651-658. https://doi.org/10.1590/S0004-27302004000500010
  44. Rentzsch, B., Todiras, M., Iliescu, R., Popova, E., Campos, L.A., Oliveira, M.L., Baltatu, O.C., Santos, R.A., and Bader, M. (2008). Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension 52, 967-973. https://doi.org/10.1161/HYPERTENSIONAHA.108.114322
  45. Robinson, E.S., Khankin, E.V., Karumanchi, S.A., and Humphreys, B.D. (2010). Hypertension induced by vascular endothelial growth factor signaling pathway inhibition: mechanisms and potential use as a biomarker. Semin. Nephrol. 30, 591-601. https://doi.org/10.1016/j.semnephrol.2010.09.007
  46. Roks, A.J., Rodgers, K., and Walther, T. (2011). Effects of the renin angiotensin system on vasculogenesis-related progenitor cells. Curr. Opin. Pharmacol. 11, 162-174. https://doi.org/10.1016/j.coph.2011.01.002
  47. Roncalli, J., Renault, M.A., Tongers, J., Misener, S., Thorne, T., Kamide, C., Jujo, K., Tanaka, T., Ii, M., Klyachko, E., et al. (2011). Sonic hedgehog-induced functional recovery after myocardial infarction is enhanced by AMD3100-mediated progenitor-cell mobilization. J. Am. Coll. Cardiol. 57, 2444-2452. https://doi.org/10.1016/j.jacc.2010.11.069
  48. Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843-845. https://doi.org/10.1038/359843a0
  49. Silvestre, J.S., Tamarat, R., Senbonmatsu, T., Icchiki, T., Ebrahimian, T., Iglarz, M., Besnard, S., Duriez, M., Inagami, T., and Levy, B.I. (2002). Antiangiogenic effect of angiotensin II type 2 receptor in ischemia-induced angiogenesis in mice hindlimb. Circ. Res. 90, 1072-1079. https://doi.org/10.1161/01.RES.0000019892.41157.24
  50. Smadja, D.M., Bieche, I., Helley, D., Laurendeau, I., Simonin, G., Muller, L., Aiach, M., and Gaussem, P. (2007). Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with upregulation of integrin alpha(6). J. Cell. Mol. Med. 11, 1149-1161. https://doi.org/10.1111/j.1582-4934.2007.00090.x
  51. Tanimoto, K., Sugiyama, F., Goto, Y., Ishida, J., Takimoto, E., Yagami, K., Fukamizu, A., and Murakami, K. (1994). Angioten-sinogen-deficient mice with hypotension. J. Biol. Chem. 269, 31334-31337.
  52. Urbich, C., and Dimmeler, S. (2004). Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res. 95, 343-353. https://doi.org/10.1161/01.RES.0000137877.89448.78
  53. Vallance, P., Collier, J., and Moncada, S. (1989). Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 2, 997-1000.
  54. Ward, K., Hata, A., Jeunemaitre, X., Helin, C., Nelson, L., Namikawa, C., Farrington, P.F., Ogasawara, M., Suzumori, K., Tomoda, S., et al. (1993). A molecular variant of angiotensinogen associated with preeclampsia. Nat. Genet. 4, 59-61. https://doi.org/10.1038/ng0593-59
  55. Wu, H.H., Ivkovic, S., Murray, R.C., Jaramillo, S., Lyons, K.M., Johnson, J.E., and Calof, A.L. (2003). Autoregulation of neurogenesis by GDF11. Neuron 37, 197-207. https://doi.org/10.1016/S0896-6273(02)01172-8
  56. Yang, H.Y., Bian, Y.F., Zhang, H.P., Gao, F., Xiao, C.S., Liang, B., Li, J., Zhang, N.N., and Yang, Z.M. (2012). Angiotensin-(1-7) treatment ameliorates angiotensin II-induced apoptosis of human umbilical vein endothelial cells. Clin. Exp. Pharmacol. Physiol. 39, 1004-1010. https://doi.org/10.1111/1440-1681.12016
  57. Yoon, J., Choi, S.C., Park, C.Y., Choi, J.H., Kim, Y.I., Shim, W.J., and Lim, D.S. (2008). Bone marrow-derived side population cells are capable of functional cardiomyogenic differentiation. Mol. Cells 25, 216-223.
  58. Youn, S.W., Lee, S.W., Lee, J., Jeong, H.K., Suh, J.W., Yoon, C.H., Kang, H.J., Kim, H.Z., Koh, G.Y., Oh, B.H., et al. (2011). COMP-Ang1 stimulates HIF-1alpha-mediated SDF-1 overexpression and recovers ischemic injury through BM-derived progenitor cell recruitment. Blood 117, 4376-4386. https://doi.org/10.1182/blood-2010-07-295964
  59. Ziaja, J., Cholewa, K., Mazurek, U., and Cierpka, L. (2008). [Molecular basics of aldosterone and cortisol synthesis in normal adrenals and adrenocortical adenomas]. Endokrynol. Pol. 59, 330-339.

Cited by

  1. The Histone Methyltransferase Inhibitor BIX01294 Inhibits HIF-1α Stability and Angiogenesis vol.38, pp.6, 2015, https://doi.org/10.14348/molcells.2015.0026
  2. NF-κB Signaling Pathway Confers Neuroblastoma Cells Migration and Invasion Ability via the Regulation of CXCR4 vol.20, 2014, https://doi.org/10.12659/MSM.892597
  3. Human placental renin-angiotensin system in normotensive and pre-eclamptic pregnancies at high altitude and after acute hypoxia-reoxygenation insult vol.594, pp.5, 2016, https://doi.org/10.1113/JP271045
  4. TNF-α promotes survival and migration of MSCs under oxidative stress via NF-κB pathway to attenuate intimal hyperplasia in vein grafts vol.21, pp.9, 2017, https://doi.org/10.1111/jcmm.13131
  5. Endothelial Progenitor Cells in Tumor Angiogenesis: Another Brick in the Wall vol.2015, 2015, https://doi.org/10.1155/2015/832649
  6. Increased cardiac remodeling in cardiac-specific Flt-1 receptor knockout mice with pressure overload vol.362, pp.2, 2015, https://doi.org/10.1007/s00441-015-2209-5
  7. Obesity Determines the Immunophenotypic Profile and Functional Characteristics of Human Mesenchymal Stem Cells From Adipose Tissue vol.5, pp.4, 2016, https://doi.org/10.5966/sctm.2015-0161
  8. Endothelial progenitor cells for cellular angiogenesis and repair: lessons learned from experimental animal models vol.12, pp.8, 2017, https://doi.org/10.2217/rme-2017-0074
  9. Effects of microRNA-133b on retinal vascular endothelial cell proliferation and apoptosis through angiotensinogen-mediated angiotensin II- extracellular signal-regulated kinase 1/2 signalling pathway in rats with diabetic retinopathy vol.96, pp.5, 2018, https://doi.org/10.1111/aos.13715
  10. The role of HIF-1α-VEGF pathway in bronchiolitis obliterans after lung transplantation vol.14, pp.1, 2019, https://doi.org/10.1186/s13019-019-0832-z
  11. Proteomic profiling of biomarkers by MALDI-TOF mass spectrometry for the diagnosis of tracheobronchial stenosis after tracheobronchial tuberculosis vol.21, pp.1, 2014, https://doi.org/10.3892/etm.2020.9495