• Title/Summary/Keyword: vascular endothelial growth factor(VEGF)

Search Result 445, Processing Time 0.019 seconds

Vascular Endothelial Growth Factor Inhibits irradiation-induced Apoptosis in Human Umbilical Vein Endothelial Cells (혈관내피세포에서 Vascular Endothelial Growth Factor가 방사선에 의해 유도된 apoptosis에 미치는 영향)

  • Lee Song Jae;Kim Dong-Yun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.165-174
    • /
    • 2002
  • Vascular endothelial growth factor (VEGF) has been identified as a peptide growth factor specific for vascular endothelial cells. In this study, we examined the effect of VEGF on radiation induced apoptosis and receptor/second messenger signal transduction pathway for VEGF effect in human umbilical vein endothelial cells (HUVECs). VEGF was found to protect HUVECs against the lethal effects of ionizing radiation by inhibiting the apoptosis induced in these cells by radiation exposure. VEGF (1-30 ng/ml) dose dependently inhibited apoptosis by irradiation. Pre-treatment with Flt-1 and Flk-l/KDR receptor blocked the VEGF-in duced antiapoptotic effect. Phosphatidylinositol 3'-kinase (PI3-kinase) specific inhibitor, Wortman in and LY294002, blocked the VEGF-induced antiapoptotic effect. These data suggest that VEGF may play an important role in survival of HUVECs due to the prevention of apoptotic cell death caused by some stresses such as ionizing radiation.

  • PDF

Increased expression of vascular endothelial growth factor-C and vascular endothelial growth factor receptor-3 after pilocarpine-induced status epilepticus in mice

  • Cho, Kyung-Ok;Kim, Joo Youn;Jeong, Kyoung Hoon;Lee, Mun-Yong;Kim, Seong Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.4
    • /
    • pp.281-289
    • /
    • 2019
  • Vascular endothelial growth factor (VEGF)-C and its receptor, vascular endothelial growth factor receptor (VEGFR)-3, are responsible for lymphangiogenesis in both embryos and adults. In epilepsy, the expression of VEGF-C and VEGFR-3 was significantly upregulated in the human brains affected with temporal lobe epilepsy. Moreover, pharmacologic inhibition of VEGF receptors after acute seizures could suppress the generation of spontaneous recurrent seizures, suggesting a critical role of VEGF-related signaling in epilepsy. Therefore, in the present study, the spatiotemporal expression of VEGF-C and VEGFR-3 against pilocarpine-induced status epilepticus (SE) was investigated in C57BL/6N mice using immunohistochemistry. At 1 day after SE, hippocampal astrocytes and microglia were activated. Pyramidal neuronal death was observed at 4 days after SE. In the subpyramidal zone, VEGF-C expression gradually increased and peaked at 7 days after SE, while VEGFR-3 was significantly upregulated at 4 days after SE and began to decrease at 7 days after SE. Most VEGF-C/VEGFR-3-expressing cells were pyramidal neurons, but VEGF-C was also observed in some astrocytes in sham-manipulated animals. However, at 4 days and 7 days after SE, both VEGFR-3 and VEGF-C immunoreactivities were observed mainly in astrocytes and in some microglia of the stratum radiatum and lacunosum-moleculare of the hippocampus, respectively. These data indicate that VEGF-C and VEGFR-3 can be upregulated in hippocampal astrocytes and microglia after pilocarpine-induced SE, providing basic information about VEGF-C and VEGFR-3 expression patterns following acute seizures.

Culture of Endothelial Cells by Transfection with Plasmid Harboring Vascular Endothelial Growth Factor

  • Chang, Sungjaae;Sohn, Insook;Park, Inchul;Sohn, Youngsook;Hong, Seokil;Choe, Teaboo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.106-109
    • /
    • 2000
  • Vascular endothelial cells (EGs) are usually difficult to culture to culture in a large scale because of their complicated requirements for cell growth. As the vascular endothelial growth factor (VEGF) is a key growth factor in the EC culture, we transfected human umbilical vein endothelial cells (HUVEC) using a plasmid containing VEGF gene and let them grow in a culture medium eliminated an important supplement, endothelail cell growth supplement(ECGS). The expression of VEGF by HUVEC tansfected with Vegf GENE was not enough to stimulate the growth of HUVEC, only 40% of maximum cell density obtainable in the presence of ECGS. However, when the culture medium was supplied with 2.5 ng/ml of basic fibroblast growth factor (bFGF), a synergistic effect effect of VEGE and bFGF was observed. In this case, the final cell density was recovered was recovered up to about 78% of maxium value.

  • PDF

Vascular Endothelial Growth Factor Upregulates Follistatin in Human Umbilical Vein Endothelial Cells

  • Oh, In-Suk;Kim, Hwan-Gyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.201-206
    • /
    • 2004
  • Vascular endothelial growth factor (VEGF), plays a key role in angiogenesis. Many endogenous factors can affect angiogenesis in endothelial cells. VEGF is known to be a strong migration, sprouting, survival, and proliferation factor for endothelial cells during angiogenesis in endothelial cells. Searching for novel genes involved in VEGF signaling during angiogenesis, we carried out differential display polymerase chain reaction on RNA from VEGF-stimulated human umbilical vein endothelial cells (HUVECs). In this study, follistatin (FS) differentially expressed in VEGF-treated HUVECs, compared with controls. Addition of VEGF (10ng/L) produced an approximately 11.8-fold increase of FS mRNA. F5 or VEGF produced approximately 1.8- or 2.9-fold increases, respectively, in matrix metalloproteinase-2 (MMP-2) secretion for 12h, compared to the addition of a control buffer. We suggest that VEGF may affect the angiogenic effect of HUVECs, through a combination of the direct effects of VEGF itself, and the indirect effects mediated via induction of FS in vitro.

Pituitary Tumor-Transforming Gene (PTTG) Induces both Vascular Endothelial Growth Factor (VEGF) and Basic Fibroblast Growth Factor (bFGF)

  • Cho, Sa-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1823-1825
    • /
    • 2005
  • Angiogenesis is tightly regulated by a variety of angiogenic activators and inhibitors. Disruption of the balanced angiogenesis leads to the progress of diseases such as cancer, rheumatoid arthritis, and diabetic blindness. Even though a number of proteins involved in angiogenesis have been identified so far, more protein factors remain to be identified due to complexity of the process. Here I report that pituitary tumor-transforming gene (PTTG) induces migration and tube formation of human umbilical vein endothelial cells (HUVECs). High levels of both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are detected in conditioned medium obtained from cells transfected with PTTG expression plasmid. Taken together, these results suggest that PTTG is an angiogenic factor that induces production of both VEGF and bFGF.

EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR AND ITS RECEPTORS IN THE DISTRACTED PERIOSTEUM AFTER MANDIBULAR DISTRACTION OSTEOGENESIS (하악골 신장술 후 신생 골막조직에서의 혈관내피세포성장인자 및 혈관내피세포성장인자 수용체 발현에 대한 연구)

  • Hwang, Deung-Uc;Byun, June-Ho;Park, Bong-Wook;Kim, Jong-Ryoul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.6
    • /
    • pp.549-558
    • /
    • 2006
  • During distraction osteogenesis, the angiogenic activity is crucial factor in the new bone formation. The aim of this study was to detect the autocrine growth activity in the cellular components of the distracted periosteum with observation of the expression of vascular endothelial growth factor (VEGF) and its receptors following the mandibular distraction osteogenesis. Unilateral mandibular distraction (0.5 mm twice per day for 10 days) was performed in six mongrel dogs. Two animals were sacrificed at 7, 14, and 28 days after completion of distraction, respectively. The distracted lingual periosteum was harvested and processed for immunohistochemical examinations. After then, we observed the expression of VEGF, Flt-1 (VEGFR-1), and Flk-1 (VEGFR-2) in the osteoblasts and immature mesenchymal cells of the distracted periosteum. At 7 days after distraction, the expression of VEGF and its receptors were significantly increased in the cellular components of the distracted periosteum. Up to 14 days following distraction, the increased expressions were maintained in the osteoblastic cells. At 28 days after distraction, the expression of VEGF and its receptors decreased, but VEGF was still expressed weak or moderate in the osteoblastic cells of distracted periosteum. The expression pattern of VEGF and its receptors shown here suggested that VEGF play an important role in the osteogenesis, and these osteoblastic cell-derived VEGF might act as autocrine growth factor during distraction osteogenesis. In the other word, the cellular components in the distracted periosteum, such as osteoblasts and immature mesenchymal cells, might have autocrine growth activity during distraction osteogenesis.

THE EFFECTS OF INSULIN-LIKE GROWTH FACTOR I (IGF-I) ON EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR (VEGF) MRNA IN MG-63 OSTEOBLASTLIKE CELLS (MG-63 세포주에서 Vascular Endothelial Growth Factor (VEGF) mRNA 발현에 대한 Insulin-like Growth Factor I (IGF-I)의 효과에 대한 연구)

  • Suh, Je-Duck;Myung, Hoon;Kang, Nara;Choung, Pill-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.5
    • /
    • pp.363-369
    • /
    • 2005
  • Purpose: To determine the role of Insulin-like Growth Factor-I (IGF-I) in the regulation of Vascular Endothelial Growth Factor (VEGF) expression in MG-63 cells and then to find the mechanism b which this regulation occurs. Materials and methods: MG-63 cells were grown to confluence in 60-mm dishes. To determine the effects of IGF-I on expression of VEGF mRNA according to time and concentration, the cells were treated with 10 nM IGF-I, following isolation of total RNA and Northern blot analysis after 1, 2, 4, 8, 12, 24 hours and after 2 hours of treatment with 0.5, 2, 10, 25, 50 nM IGF-I respectively, isolation of total RNA and Northern blot analysis were followed. To determine the mechanism of action of IGF-I, inhibitors such as hydroxyurea $(76.1\;{\mu}g/ml)$, actinomycin D $(2.5\;{\mu}g/ml)$, cycloheximide $(10\;{\mu}g/ml)$ were added 1 hour after treatment of 10 nM IGF-I. Results: 1. the expression of VEGF mRNA was increased with treatment of IGF-I. 2. The expression of VEGF mRNA was increased according to time-and concentration dependent manner of IGF-I. 3. The effect of IGF-I was decreased by hydroxyuera, actinomycin D, but not by cycloheximide. Conclusion: IGF-I regulate the expression of VEGF mRNA in the level of DNA synthesis and transcription. These results could suggest that IGF-I plays an important role in angiogenesis in the process of new bone formation and remodeling.

Vascular Endothelial Growth Factor Effect on Notch 1 Expression and Proliferation of Fibroblast (혈관내피성장인자의 섬유아세포 증식과 Notch 1 발현에 대한 영향)

  • Koh, Sung-Hoon
    • Archives of Plastic Surgery
    • /
    • v.37 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • Purpose: Vascular endothelial growth factor (VEGF) is known as a growth factor of endothelium and fibroblast. The purpose is to know the VEGF effects on fibroblast proliferation and fibroblast's notch receptor expression. Methods: CCD-986sk fibroblast was purchased from the Korean Cell Bank and was used in XTT assay for proliferation and wound healing assay for migration. Immunofluorescent (IF) staining and western blotting were used in testing notch expression of fibroblast. Semiquantitative RT-PCR was used in checking notch 1 mRNA production by fibroblast. Student-t test was used for analyzing results. Results: Cell proliferation assay using XTT showed significant higher proliferation in VEGF treated fibroblast, $2.324{\pm}0.0026$ vs. $2.463{\pm}0.017$ (p=0.002). Wound healing assay showed longer migration in VEGF treated fibroblast (p=0.062). The fluorescence was brighter in VEGF treated cells of notch 1 IF staining. Notch 1 expressions and mRNA productions increased more in VEGF treated cells. Conclusion: VEGF stimulates fibroblast to proliferate, migrate and to express Notch 1 simultaneously. Notch receptor could be related to VEGF mediated wound healing.

Expression of vascular endothelial growth factor and angiogenesis in head and neck squamous cell carcinoma (두경부 편평세포암종에서 VEGF(vascular endothelial growth factor)의 발현 및 신생혈관생성)

  • Jeong, Yeon-Gi;Lee, Hyung-Seok;Park, Chul-Won;Kang, Mee-Jeong;Park, Yong-Uk;Park, Chan-Kum;Jang, Se-Jin;Tae, Kyung
    • Korean Journal of Bronchoesophagology
    • /
    • v.8 no.1
    • /
    • pp.35-41
    • /
    • 2002
  • Background and Objectives : Angiogenesis within malignant tumors has been considered to be essential for the growth and expansion of cancer cells, especially for solid tumors, and has been implicated in the overall growth and metastases of tumors. Such angiogenesis within tumors depends upon the secretion of vascular growth factor to allow the growth of newly formed vessels from peripheral tissue into the malignant tumor. %n, an exploration of the relations between cancer cells and vascular growth factors is absolutely critical to understanding the growth of malignant tumors. According to recent reports, vascular endothelial growth factor(VEGF) has been found to play a role in lymphatic metastases, tumor recurrence and survival in various human tumors. To evaluate the role of VEGF in head and neck squamous cell carcinoma(HNSCC) we performed this study. Materials and Methods : We examined the expression of VEGF and microvessel density in 39 HNSCC by immunohistochemistry and correlated them with various clinical data such as stage, cervical lymphatic metastasis, recurrence, and overall survival. Results : The expression of VEGF was not correlated with overall stage, T stage and N stage. There was no statistical correlation between the expression of VEGF and recurrence in the Primary site, cervical lymph node, and the distant metastases. There was no statistical correlation between the expression of VEGF and microvessel density. Conclusion : Based on these results, it is suggested that the expression of vascular endothelial growth factor is not a major prognostic factor for head and neck squamous cell carcinoma. Further studies are needed to evaluate significance of VEGF expression in head and neck squamous cell carcinoma.

  • PDF