References
- J. Biol. Chem. v.273 Vascular endothelial growth factor regulates endothelial ell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway Gerber,H.P.;A.McMurtrey;J.Kowalski;M.Yan;B.A.Keyt;V.Dixit;N.Ferrara https://doi.org/10.1074/jbc.273.46.30336
- Eur. J. Cancer v.32 Vascular endothelial growth factor Ferrara,N. https://doi.org/10.1016/S0959-8049(96)00387-5
- Nat. Med. v.9 Angiogenesis in health and disease Carmeliet,P. https://doi.org/10.1038/nm0603-653
- Science v.255 The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor de Vries,C.;J..Escobedo;H.Ueno;K.Houck;N.Ferrara;L.T.Williams https://doi.org/10.1126/science.1312256
- Cell v.72 High affinity VEGF binding and developmental expression sug gest Flk-1 as a major regulator of vasculogenesis and angiogenesis Millauer,B.;S.Wizigmann-Voos;H.Schnurch;R.Martinez;N.P.H.Moller;W.Risau;A.Ulrich https://doi.org/10.1016/0092-8674(93)90573-9
- Arch. Surg. v.128 Therapeutic angiogenesis Hockel,M.;K.Schlenger;S.Doctrow;T.Kissel;P.Vaupel https://doi.org/10.1001/archsurg.1993.01420160061009
- Nat. Med. v.5 Therapeutic angiogenesis for heart failure Isner,J.M.;D.W.Losordo https://doi.org/10.1038/8374
- J. Biol. Chem. v.276 Hypoia-inducible factor-2alpha (HIF-2alpha) is involved in the apoptotic response to hypoglycemia but not to hypoxia Brusselmans,K.;F.Bono;P.Maxwell;Y.Dor;M.Dewerchin;D.Collen;J.M.Herbert;P.Carmeliet https://doi.org/10.1074/jbc.C100428200
- FASEB J. v.13 Vascular endothelial growth factor(VEGF) and its receptors Neufeld,G.;T.Cohen;S.Gengrinovitch;Z.Poltorak https://doi.org/10.1096/fasebj.13.1.9
- Biochem. Biophys. Res. Commu. v.149 The isolation of polypeptides with FSH suppressing activity from bovine follicular fluid which are structurally different to inhibin Robertson,D.M.;R.Klein;F.L. de Vos;R.I.McLachlan;R.E.Wettenhall;M.T.Hearn;H.G.Burger;D.M. de Kretser https://doi.org/10.1016/0006-291X(87)90430-X
- Proc. Natl. Acad. Sci. USA v.84 Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone Ueno,N.;N.Ling;S.Y.Ying;F.Esch;S.Shimasaki;R.Guillemin https://doi.org/10.1073/pnas.84.23.8282
- Mol. Cell. Endocrinol. v.172 Follistatin production by skin fibroblasts and its regulation by dexamethasone Kawakami,S.;Y.Fujii;S.J.Winters https://doi.org/10.1016/S0303-7207(00)00371-3
- Exp. Biol. Med. v.214 Inhibins, activins, and follistatins: the saga continues DePaolo,L.V. https://doi.org/10.3181/00379727-214-44100
- Nature v.386 Mechanisms of angiogenesis Risau,W. https://doi.org/10.1038/386671a0
- J. Biol. Chem. v.267 Angiogenesis Folkman,J.;Y.Shing
- Cell v.92 Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity Brooks,P.C.;S.Silletti;T.L. von Schalscha;M.Friedlander;D.A.Cheresh https://doi.org/10.1016/S0092-8674(00)80931-9
- Science v.257 Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction Liang,P.;A.B.Pardee https://doi.org/10.1126/science.1354393
- J. Biol. Chem. v.274 Molecular cloning, expression, and characterization of angiopoietin-related protein induces endothelial cell sprouting Kim,I.;S.O.Moon;K.N.Koh;H.Kim;C.S.Uhm;H.J.Kwak;N.G.Kim;G.Y.Koh https://doi.org/10.1074/jbc.274.37.26523
- Cell and tissue culture: Labortory procedures Kleiner,D.E.;I.M.K.Margulis;W.G.Stetler-Stevenson;A.Doyle.(ed.);J.B.Griffiths(ed.);D.G.Newell(ed.)
- Neuro-oncol. v.5 Antiangiogenic effects of dexamethasone in 9L gliosarocma as sessed by MRI cerebral blood volume maps Badruddoja,M.A.;H.G.Krouwer;S.D.Rand;K.J.Rebro;A.P.Pathak;K.M.Schmainda https://doi.org/10.1215/S1152851703000073
- Am. J. Physiol. Lung Cell. Mol. Physiol. v.286 DNA microarray analysis of neonatal mouse lung connects regulation of KDR with dexamethasone-induced inhibition of alveolar formation Clerch,L.B.;A.S.Baras;G.D.Massaro;E.P.Hoffman;D.Massaro https://doi.org/10.1152/ajplung.00306.2003
- Endocrinology v.130 Follistatin gene expression in the pituitary: loalization in gonadotropes and folliculostellate cells in diestrous rats Kaiser,U.B.;B.L.Lee;R.S.Carroll;G.Unabia;W.W.Chin;G.V.Childs https://doi.org/10.1210/en.130.5.3048
- Lab. Invest. v.76 The activin-binding protein follistatin regulates autocrine endothelial cell activity and induces angiogenesis Kozian,D.H.;M.Ziche;H.G.Augustin
- Enzyme Protein v.49 Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis Pepper,J.S.;R.Montesano;S.J.Mandriota;L.Orci;J.D.Vassalli https://doi.org/10.1159/000468622
- Cell v.95 Matrix metalloproteinases regulate neovas-cularization by acting as pericellular fibrinolysins Hiraoka,N.;E.Allen;I.J.Apel;M.R.Gyetko;S.J.Weiss https://doi.org/10.1016/S0092-8674(00)81768-7
- Angiogenesis v.6 Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases Brown,M.D.;O.Hudlicka https://doi.org/10.1023/A:1025809808697
- IUBMB Life v.52 VEGF receptor signaling and endothelial function Kliche,S.;J.Waltenberger https://doi.org/10.1080/15216540252774784
- Circ. Res. v.83 Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of flt-1 Wang,H.;J.A.Keiser https://doi.org/10.1161/01.RES.83.8.832
- Thromb. Haemost. v.85 Expression of vascular endothelial growth factor in human monocyte/macrophages stimulated with lipopolysaccharide Itaya,H.;T.Imaizumi;H.Yoshida;M.Koyama;S.Suzuki;K.Satoh
- Am. J. Physiol. Heart Circ. Physiol. v.279 Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle Haas,T.L.;M.Milkiewicz;S.J.Davis;A.L.Zhou;S.Egginton;M.D.Brown;J.A.Madri;O.Hudlicka https://doi.org/10.1152/ajpheart.2000.279.4.H1540