• Title/Summary/Keyword: varying thickness

Search Result 763, Processing Time 0.033 seconds

Studies on the Freezing Time Prediction and Factors Influencing Freezing Time Prediction (식품의 동결시간 예측 및 동결시간에 영향을 미치는 요인에 관한 연구)

  • Kong, Jai-Yul;Jeong, Jin-Woong;Kim, Min-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.827-833
    • /
    • 1988
  • The objectives of this investigation were to develop an improved analytical method and to review with respect to experimental parameters and thermo-physical properties influencing the freezing time prediction. The results indicate that the relationship between freezing time and product size is dependent on the surface heat transfer coefficient. As the magnitude of surface heat transfer coefficient decreases, the influence of product size on freezing time becomes more profound. But the freezing time does decrease slightly as the coefficients are increased to values greater than 150 $w/m^2^{\circ}C$. In addition, influence of thermo-physical properties on the freezing time prediction shown generally density, water content, specific heat and thermal conductivity, in order of % difference. Multiple linear regression equation for freezing time prediction were obtained with respect to 4 different food materials with varying thickness.

  • PDF

A Study on the Leakage Characteristic Evaluation of High Temperature and Pressure Pipeline at Nuclear Power Plants Using the Acoustic Emission Technique (음향방출기법을 이용한 원전 고온 고압 배관의 누설 특성 평가에 관한 연구)

  • Kim, Young-Hoon;Kim, Jin-Hyun;Song, Bong-Min;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.466-472
    • /
    • 2009
  • An acoustic leak monitoring system(ALMS) using acoustic emission(AE) technique was applied for leakage detection of nuclear power plant's pipeline which is operated in high temperature and pressure condition. Since this system only monitors the existence of leak using the root mean square(RMS) value of raw signal from AE sensor, the difficulty occurs when the characteristics of leak size and shape need to be evaluated. In this study, dual monitoring system using AE sensor and accelerometer was introduced in order to solve this problem. In addition, artificial neural network(ANN) with Levenberg.Marquardt(LM) training algorithm was also applied due to rapid training rate and gave the reliable classification performance. The input parameters of this ANN were extracted from varying signal received from experimental conditions such as the fluid pressure inside pipe, the shape and size of the leak area. Additional experiments were also carried out and with different objective which is to study the generation and characteristic of lamb and surface wave according to the pipe thickness.

Analysis of Springback of Sheet Metal(I): Analytical Model Based on the Residual Differential Strain (박판재의 스프링백 해석(I)-잔류 변형율에 근거한 해석모델)

  • Lee, Jae-Ho;Kim, Dong-Woo;Sohn, Sung-Man;Lee, Mun-Yong;Moon, Young-Hoon
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.509-515
    • /
    • 2007
  • As the springback of sheet metal during unloading may cause deviation from a desired shape, accurate prediction of springback is essential for the design of sheet stamping operations. When considering the case of a sheet metal being bent to radius $\rho$ that is such that the maximum stress induced exceed the elastic limit of the material, plastic strain in the outer surface will occur and the material will take a permanent set: but since, on removing the bending moment, the recovery of the material is not uniform across the thickness, springback will occur and the radius $\rho$ will not be maintained. Furthermore, when a tensile load being applied to each end of specimen, the tensile stress due to bending is increased and the compressive stress is decreased or cancelled and eventually the whole specimen may be in varying degree of tension. On the removal of the applied load the specimen loses its elastic strain by contracting around the contour of the block, the radius $\rho$ will be determined by the residual differential strain. Therefore in this study the springback is analytically estimated by the residual differential strains between upper and lower surfaces of greatest radius after elastic recovery, and a springback model based on the bending moment is also analytically derived for comparison purpose.

Sputtering yield of the MgO thin film grown on the Cu substrate by using the focused ion beam (집속이온빔을 이용한 구리 기판위에 성장한 MgO 박막의 스퍼터링 수율)

  • 현정우;오현주;추동철;최은하;김태환;조광섭;강승언
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.4
    • /
    • pp.396-402
    • /
    • 2001
  • MgO thin films with 1000 $\AA$ thickness were deposited on Cu substrates by using an electron gun evaporator at room temperature. A 1000 $\AA$ thick Al layer was deposited on the MgO for removing the charging effect of the MgO thin film during the measurements of the sputtering yields. A Ga ion liquid metal was used as the focused ion beam(FIB) source. The ion beam was focused by using double einzel lenses, and a deflector was employed to scan the ion beams into the MgO layer. Both currents of the secondary particle and the probe ion beam were measured, and they dramatically changed with varying the applied acceleration voltage of the source. The sputtering yield of the MgO layer was determined using the values of the analyzed probe current, the secondary particle current, and the net current. When the acceleration voltage of the FIB system was 15 kV, the sputtering yield of the MgO thin film was 0.30. The sputtering yield of the MgO thin film linearly increases with the acceleration voltage. These results indicate that the FIB system is promising for the measurements of the sputtering yield of the MgO thin film.

  • PDF

Optimal Determination of the Fabrication Parameters in Focused Ion Beam for Milling Gold Nano Hole Array (금 나노홀 어레이 제작을 위한 집속 이온빔의 공정 최적화)

  • Cho, Eun Byurl;Kwon, Hee Min;Lee, Hee Sun;Yeo, Jong-Souk
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.262-269
    • /
    • 2013
  • Though focused ion beam (FIB) is one of the candidates to fabricate the nanoscale patterns, precision milling of nanoscale structures is not straightforward. Thus this poses challenges for novice FIB users. Optimal determination in FIB parameters is a crucial step to fabricate a desired nanoscale pattern. There are two main FIB parameters to consider, beam current (beam size) and dose (beam duration) for optimizing the milling condition. After fixing the dose, the proper beam current can be chosen considering both total milling time and resolution of the pattern. Then, using the chosen beam current, the metal nano hole structure can be perforated to the required depth by varying the dose. In this experiment, we found the adequate condition of $0.1nC/{\mu}m^2$ dose at 1 pA Ga ion beam current for 100 nm thickness perforation. With this condition, we perforated the periodic square array of elliptical nano holes.

Buckling Analysis of Laminated Composite Plates under the In-plane Compression and Shear Loadings (면내 압축 및 전단하중을 받는 적층복합판의 좌굴 해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5199-5206
    • /
    • 2010
  • In this paper, we investigate the buckling analysis of laminated composite plates, using a improved assumed natural strain shell element. In order to overcome membrane and shear locking phenomena, the assumed natural strain method is used. The eigenvalues of the laminated composite plates are calculated by varying the width-thickness ratio and angle of fiber. To improve an shell element for buckling analysis, the new combination of sampling points for assumed natural strain method was applied and the refined first-order shear deformation theory which allows the shear deformation without shear correction factor. In order to validate the present solutions, the reference solutions are used and discussed. The results of laminated composite plates under the in-plane shear loading may be the benchmark test for the buckling analysis.

A Study on Resisting Force of H-Shaped Beam Using Glass Web Plate (유리 웨브를 사용한 H형 합성보의 내력에 관한 연구)

  • Son, Ki-Sang;Jeon, Chang-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.73-80
    • /
    • 2006
  • Generally beam design depends on the yielding and maximum strength of each member varying with its section shape. Web plate of H-shape beam has not been substituted with glass plate, because it is known that its strength and heat properties are different and it is limited to substitute the existing steel web with glass element. Ceiling height of each room should be decreased with more than 60-80cm due to the beam. Differently from this condition, glass web beam has a good point to see through it and sunshine can be penetrate into the other size especially when it is installed as of outside wall. And also, it can be safer due to controlling room inside easier, if the strength is applicate. This study is to show some applicability after finding out the properties using the test. The test members with a size of $1,600{\times}200{\times}300{\times}9mm$ being SS41 rolled steel having THK 9mm flange while having 8,10mm and reinforced glass 12mm thickness is bonded with epoxy bond under the condition of temperature $28^{\circ}C$, humidity 50%, bonding power 24Mpa. It is show reinforced glass has 5 times of fracture stress more than the common glass but $50{\sim}150%$ difference between these 2 kinds of glass was shown. Reinforce glass did not support the original upper flange after fracture but the common glass did the upper flange after unloading. Generally reinforced glass is stronger than the common one but the common glass having a part of crack on it, compared with reinforced glass having the overall fracture could be more useful in case of needing ductility.

Characterization of Chemical Bath Deposited ZnS Thin Films and Its application to $Cu(InGa)Se_2$ Solar Cells (용액성장법에 의한 황화아연 박막층 분석 및 이의 CIGS 태양전지로의 응용)

  • Shin, Dong-Hyeop;Larina, Liudmila;Yun, Jae-Ho;Ahn, Byung-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.138-138
    • /
    • 2009
  • Recently, thin-film solar cells of Cu(In,Ga)$Se_2$(CIGS) have reached a high level of performance, which has resulted in a 19.9%-efficient device. These conventional devices were typically fabricated using chemical bath deposited CdS buffer layer between the CIGS absorber layer and ZnO window layer. However, the short wavelength response of CIGS solar cell is limited by narrow CdS band gap of about 2.42 eV. Taking into consideration the environmental aspect, the toxic Cd element should be replaced by a different material. It is why during last decades many efforts have been provided to achieve high efficiency Cd-free CIGS solar cells. In order to alternate CdS buffer layer, ZnS buffer layer is grown by using chemical bath deposition(CBD) technique. The thickness and chemical composition of ZnS buffer layer can be conveniently by varying the CBD processing parameters. The processing parameters were optimized to match band gap of ZnS films to the solar spectrum and exclude the creation of morphology defects. Optimized ZnS buffer layer showed higher optical transmittance than conventional thick-CdS buffer layer at the short wavelength below ~520 nm. Then, chemically deposited ZnS buffer layer was applied to CIGS solar cell as a alternative for the standard CdS/CIGS device configuration. This CIGS solar cells were characterized by current-voltage and quantum efficiency measurement.

  • PDF

Effectiveness of Temporal Augmentation Using a Calvarial Onlay Graft during Pterional Craniotomy

  • Kim, Yoon Soo;Yi, Hyung Suk;Kim, Han Kyu;Han, Yea Sik
    • Archives of Plastic Surgery
    • /
    • v.43 no.2
    • /
    • pp.204-209
    • /
    • 2016
  • Temporal hollowing occurs to varying degrees after pterional craniotomy. The most common cause of temporal hollowing is a bony defect of the pterional and temporal regions due to the resection of the sphenoid ridge and temporal squama for adequate exposure without overhang. The augmentation of such bony defects is important in preventing craniofacial deformities and postoperative hollowness. Temporal cranioplasty has been performed using a range of materials, such as acrylics, porous polyethylene, bone cement, titanium, muscle flaps, and prosthetic dermis. These methods are limited by the risk of damage to adjacent tissue and infection, a prolonged preparation phase, the possibility of reabsorption, and cost inefficiency. We have developed a method of temporal augmentation using a calvarial onlay graft as a single-stage neurosurgical reconstructive operation in patients requiring craniotomy. In this report, we describe the surgical details and review our institutional outcomes. The patients were divided into pterional craniotomy and onlay graft groups. Clinical temporal hollowing was assessed using a visual analog scale (VAS). Temporal soft tissue thickness was measured on preoperative and postoperative computed tomography (CT) studies. Both the VAS and CT-based assessments were compared between the groups. Our review indicated that the use of an onlay graft was associated with a lower VAS score and left-right discrepancy in the temporal contour than were observed in patients undergoing pterional craniotomy without an onlay graft.

Synthesis and Electromagnetic Wave Absorbing Property of BaTiO3@Fe Nanofibers with Core-Shell Structure (코어-쉘 구조를 갖는 BaTiO3@Fe 나노섬유의 합성 및 전자파 흡수 특성)

  • Lee, Young-In;Jang, Dae-Hwan;Sung, Ki-Hoon;Lee, Kyuman;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.38-42
    • /
    • 2016
  • $BaTiO_3$-coated Fe nanofibers are synthesized via a three-step process. ${\alpha}-Fe_2O_3$ nanofibers with an average diameter of approximately 200 nm are first prepared using an electrospinning process followed by a calcination step. The $BaTiO_3$ coating layer on the nanofiber is formed by a sol-gel process, and a thermal reduction process is then applied to the core-shell nanofiber to selectively reduce the ${\alpha}-Fe_2O_3$ to Fe. The thickness of the $BaTiO_3$ shell is controlled by varying the reaction time. To evaluate the electromagnetic (EM) wave-absorbing abilities of the $BaTiO_3@Fe$ nanofiber, epoxy-based composites containing the nanofibers are fabricated. The composites show excellent EM wave absorption properties where the power loss increases to the high frequency region without any degradation. Our results demonstrate that the $BaTiO_3@Fe$ nanofibers obtained in this work are attractive candidates for electromagnetic wave absorption applications.