• Title/Summary/Keyword: varying thickness

Search Result 763, Processing Time 0.027 seconds

The effect of varying peripheral bone structure and bone density on the occlusal stress distribution of human premolar regions (사람 소구치부위에서 주위골의 구조 및 밀도변화가 교합력에 의한 치아의 응력분포에 미치는 영향)

  • Suh, Ye-Joon;Shim, June-Sung;Lee, Keun-Woo;Chung, Moon-Kyu;Lee, Ho-Yong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.1
    • /
    • pp.7-15
    • /
    • 2003
  • This study used FEM(Finite Element method) based on micro-CT images to see the effects of occlusal force distribution with varying bone density and structure. the mandibular premolar region from human cadaver, thickness of 10mm was imaged using micro-CT. the cross sectional images were taken every $10{\mu}m$. these were reconstructed and the longitudinal image at the mid point of mesiodistal of the speciman was obtained for the specimen for the FEM. The stress disribution produced by a vertical force at 100N and 100N horizontal were analyzed by MSC Nastran FEM Package. according to the result of this study the occlusal force distribution depends on the structure of cancellus bone and for further information on the occlusal force distribution on the tooth and the surrounding structure requires further studies on cancellus bone structure. CEJ of all model show the highest peak and region whice meet teeth and bone show second high peak. Original model and cortical bone add model show different stress distribution. Stress distribution changed according to bone structures and densities.

Modeling of Nano-scale FET(Field Effect Transistor : FinFET) (나노-스케일 전계 효과 트랜지스터 모델링 연구 : FinFET)

  • Kim, Ki-Dong;Kwon, Oh-Seob;Seo, Ji-Hyun;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.6
    • /
    • pp.1-7
    • /
    • 2004
  • We performed two-dimensional (20) computer-based modeling and simulation of FinFET by solving the coupled Poisson-Schrodinger equations quantum-mechanically in a self-consistent manner. The simulation results are carefully investigated for FinFET with gate length(Lg) varying from 10 to 80nm and with a Si-fin thickness($T_{fin}$) varying from 10 to 40nm. Current-voltage (I-V) characteristics are compared with the experimental data. Device optimization has been performed in order to suppress the short-channel effects (SCEs) including the sub-threshold swing, threshold voltage roll-off, drain induced barrier lowering (DIBL). The quantum-mechanical simulation is compared with the classical appmach in order to understand the influence of the electron confinement effect. Simulation results indicated that the FinFET is a promising structure to suppress the SCEs and the quantum-mechanical simulation is essential for applying nano-scale device structure.

A Study on the Processing Conditions of Younsa (연사의 조리 과학적 연구)

  • 김종한;김태홍
    • Korean journal of food and cookery science
    • /
    • v.2 no.1
    • /
    • pp.59-64
    • /
    • 1986
  • This study was designed to revive the disappeared Younsa and to investigate the optimum processing condition and characteristics of Younsa nade of the glutinous rice powder. Agitating time of base mixture, thickness of Younsa base, and frying time were examined as the influencing factors in Younsa processings. The textural parameters of Younsa were determined by sensory cvaluation and hardness of Younsa was measured by Rheometer. The results were found as follows; 1. In the sensory evaluation, 1) The Younsa base agitated for 10 minutes by agitating machine was favorable. It, however, did not showed any significant difference among products prepared under varying agitaing time-10 minutes, 20 minutes, and 30 minutes. (p<0.05) 2) The thinnest Younsa base (5 cm$\times$4cm, 1.1-1.5g) showed the most favorable quality and the second quality went to 5cm$\times$4cm, 1.6-2.0g, the third 5cm$\times$4cm, 2.1-2.5g, the fourth 5 cm$\times$4 cm, 2.6-3.0g. (p<0.05) 3) In examination of varying frying time, the optimal time for frying Younsa was 12 minutes was 12 minutes in $150 ^{\circ}C$. However, the quality was found no significant difference between 12 minutes's fried Younsa and 14 minutes's. (p<0.05). 2. The hardness of the most favorable Younsa, agitated for 10 minutes, the thinnest (5 cm$\times$4 cm, 1.1-1.5g), ana fried for 12 minutes in $150^{\circ}C$ was 0.59-0.73 kg/wt measured by Rheometer. The thickest Younsa base (5 cm$\times$4 cm, 2.6-3.0g) is the hardest (1.26 kg/wt). The most optimal conditions in this experiment were found the same ones which was written in historical literature.

  • PDF

Electrical Characteristics of Organic Light-emitting Diodes Fabricated by Varying a Hole-size in Evaporation Boat

  • Kim, Weon-Jong;Park, Young-Ha;Cho, Kyung-Soon;Hong, Jin-Woong;Shin, Jong-Yeol;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.105-109
    • /
    • 2008
  • Electrical characteristics of organic light-emitting diodes were investigated by varying a hole-size in evaporation boat in the device structure of ITO/tris(8-hydroxyquinoline) aluminum$(Alq_3)$/Al. The device was manufactured using a thermal evaporation under a base pressure of $5{\times}10^{-6}$ Torr. The $Alq_3$ emitting organics were evaporated to be a thickness of 100 nm at a deposition rate of $1.5{\AA}/s$. A cylindrical-shaped evaporation boat was made out of stainless steel with a small size of hole on top of the boat. Several evaporation boats were made having a different hole size on top; 0.8 mm, 1.0 mm, 1.5 mm, and 3.0 mm. We found that when the hole size on top of the evaporation boat is 1.0 mm, the average roughness is rather smoother compared to the other ones. Also, luminance and external quantum efficiency are superior to the others. Compared to the ones from the devices made with the hole-size of 0.8 mm boat. The luminance and external quantum efficiency of the device made with the hole-size of 1.0 mm boat were improved by a factor of seventy and thirty three, respectively. Also operating voltage is reduced to 2 V.

A Study on the Aging Behavior of Ship Organic Coating by the Flow Induced Shear Stress (유동 전단응력에 의한 선박 유기도막의 열화거동 연구)

  • Park Hyun;Park Jin-Hwan;Ha Hyo-Min;Chun H.H.;Lee In-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.1 s.24
    • /
    • pp.9-14
    • /
    • 2006
  • Analysis has been made of the anti-corrosive property of organic coating under the shear stress of the flow by means of AC impedance method. Marine anti-corrosive painted panels were placed in the water channel with varying flow rate, thereby experiencing varying flow shear stress on the surfaces. The velocities of the salt water were ranged from 1.48 to 5.2 m/s and the coating thickness of from $70{\mu}m\;to\;140{\mu}m$. For all coating thicknesses investigated, the poorer anti-corrosive property and the lower adhesion strength have been found for the higher shear stress. It has been found that the shear stress accelerates the aging of organic marine coatings.

  • PDF

Optimization of Process Parameters of Incremental Sheet Forming of Al3004 Sheet Using Genetic Algorithm-BP Neural Network (유전 알고리즘-BP신경망을 이용한 Al3004 판재 점진성형 공정변수에 대한 최적화 연구)

  • Yang, Sen;Kim, Young-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.560-567
    • /
    • 2020
  • Incremental Sheet Forming (ISF) is a unique sheet-forming technique. The process is a die-less sheet metal manufacturing process for rapid prototyping and small batch production. In the forming process, the critical parameters affecting the formability of sheet materials are the tool diameter, step depth, feed rate, spindle speed, etc. This study examined the effects of these parameters on the formability in the forming of the varying wall angle conical frustum model for a pure Al3004 sheet with 1mm in thickness. Using Minitab software based on Back Propagation Neural Network (BPNN) and Genetic Algorithm (GA), a second order mathematical prediction model was established to predict and optimize the wall angle. The results showed that the maximum forming angle was 87.071° and the best combination of these parameters to give the best performance of the experiment is as follows: tool diameter of 6mm, spindle speed of 180rpm, step depth of 0.4mm, and feed rate of 772mm/min.

Structural Intensity Analysis of Local Ship Structures Using Finite Element Method (유한요소법을 이용한 선체 국부 구조물의 진동인텐시티 해석)

  • Dong-Hwan Lee;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.62-73
    • /
    • 2001
  • The interest in evaluation of structural intensity arises for practical reasons, because net energy flow distribution offers information of energy transmission path, positions of sources, and sinks of vibration energy. In this paper, structural intensity analysis of local ship structures using finite element method(FEM) is carried out. The purpose of this analysis is to evaluate the relative accuracy according to mesh fineness. The structural intensity of unstiffened and stiffened plates varying their mesh fineness is analyzed and the results are compared with those obtained by the assumed mode method. As results, the proper mesh size in qualitative/quantitative structural intensity analysis of plate structures is proposed. In addition, the propagation phenomenon of vibration energy is investigated for the thickness-varying flat plate, L-type plate, and box-girder structures.

  • PDF

Effect of increasing levels of threonine relative to lysine on the performance and meat quality of finishing pigs

  • Upadhaya, Santi Devi;Lee, Sang Seon;Jin, Sung Giu;Wu, Zhenlong;Kim, In Ho
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.1987-1994
    • /
    • 2021
  • Objective: The present study aimed to evaluate the effects of varying standardized ileal digestible lysine:threonine (SID Lys:Thr) ratio in the diet on the performance and meat quality of finishing pigs. Methods: In total 192 crossbred pigs ([Landrace×Yorkshire]×Duroc, 17 weeks old), with an initial body weight (BW) of 70.6±3.9 kg were used in an 8-wk trial. Pigs were randomly allotted to one of six dietary treatments based on their initial BW and sex (8 replications; 4 pigs per pen, 2 barrows and 2 gilts). The pigs in the 6 treatments were fed diets having different SID Lys:Thr ratios such as 1:0.65, 1:0.66, 1:0.67, 1:0.68, 1:0.69, and 1:0.70. Results: A linear increment (p<0.05) in average daily gain (ADG) and trends in reduction in feed conversion ratio (FCR) were observed during day 29 to 56 of the experiment and the apparent total tract digestibility (ATTD) of dry matter tended to increase linearly (p = 0.094) at the end of the experiment (day 56) with the increase in the dietary SID Lys:Thr ratios. The backfat thickness and lean percentage increased (linear effect, p<0.05) on day 28. In addition, at day 56, a linear (p<0.05) increment in lean percentage was observed. Significant quadratic responses (p = 0.02) for pH and drip loss at day 7 (p = 0.02), a linear increase (p<0.05) in cooking loss and drip loss at day 7, and a trend in quadratic response (p = 0.07) in the lightness of meat color (L*) were observed, whereas other meat quality indices were unaffected by varying the SID Lys:Thr ratios. Conclusion: The SID Lys:Thr ratio for maximum ADG, minimum FCR and enhanced digestibility was found to be 0.70. However, for carcass trait and meat quality, the SID Lys:Thr ratio of 0.65 was enough.

Modified Equation for Ductility Demand Based Confining Reinforcement Amount of RC Bridge Columns (철근콘크리트 교각의 소요연성도에 따른 심부구속철근량 산정식 수정)

  • Lee, Jae-Hoon;Son, Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • An equation for calculating confining reinforcement amount of RC bridge columns, specified in the current bridge design codes, has been made to provide additional load-carrying strength for concentrically loaded columns. The additional load-carrying strength will be equal to or slightly greater than the resistant strength of a column against axial load, which is lost because the cover concrete spalls off. The equation considers concrete compressive strength, yield strength of transverse reinforcement, and the section area ratio as major variables. Among those variables, the section area ratio between the gross section and the core section, varying by cover thickness, is a variable which considers the strength in the compression-controlled region. Therefore, the cross section ratio does not have a large effect in the aspect of ductile behavior of the tension-controlled region, which is governed by bending moment rather than axial force. However, the equation of the design codes for calculating confining reinforcement amount does not directly consider ductile behavior, which is an important factor for the seismic behavior of bridge columns. Consequently, if the size of section is relatively small or if the section area ratio becomes excessively large due to the cover thickness increased for durability, too large an amount of confining reinforcement will be required possibly deteriorating the constructability and economy. Against this backdrop, in this study, comparison and analysis were performed to understand how the cover thickness influences the equation for calculating the amount of confining reinforcement. An equation for calculating the amount of confining reinforcement was also modified for reasonable seismic design and the safety. In addition, appropriateness of the modified equation was examined based on the results of various test results performed at home and abroad.

Secondary electron emission characteristics of a thermally grown $SiO_2$ thin layer (건식 열산화로 성장시킨 $SiO_2$박막의 이차전자 방출 특성)

  • 정태원;유세기;이정희;진성환;허정나;이휘건;전동렬;김종민
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.31-36
    • /
    • 2001
  • The secondary election emission (SEE) yields for the thermally grown $SiO_2$ thin layers were measured by varying the thickness of the $SiO_2$ layer and the primary current. $SiO_2$ thin layers were thermally grown in a furnace at $930^{\circ}C$, whose thickness varied to be 5.8 nm, 19 nm, 43 nm, 79 nm, 95 nm, and 114 nm. When the $SiO_2$ layers were thinner than 43 nm, it was found that SEE curves followed the universal curve. However, for samples with a $SiO_2$ layer thicker than 79 nm, the SEE curves exhibited two maxima and the values of SEE yields were reduced. Additionally, as the current of primary electrons increased, the SEE yields were reduced. In this experiment, the maximum value of the SEE yield for $SiO_2$ layers was obtained to be 3.35 when the thickness of $SiO_2$ layer was 19 nm, with the primary electron energy 300 eV and the primary electron current 0.97 $\mu\textrm{A}$. The penetration and escape depth of an electron in the $SiO_2$ layers were calculated at the primary electron energy for the maximum value of the SEE yield and from these depths, it was calculated that the thickness of the $SiO_2$layer.

  • PDF