• Title/Summary/Keyword: varying thickness

Search Result 763, Processing Time 0.652 seconds

Study on the Comparison of Heat Exchange Performance of Liquefied Gas Vaporizer at Super Low Temperature (초저온 액화가스 기화기의 열 교환성능 비교에 관한 연구)

  • Kim, Pil-Hwan;Kim, Chul-Pyo;Jeong, Hyo-Min;Chung, Han-Shik;Lee, Yong-Hun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.679-688
    • /
    • 2008
  • Air-heating vaporizer usually is used to regasify LNG at satellite areas because of the small demand of natural gas there. The common type of air heating vaporizer which exists in the market is the longitudinally finned type with 8 fins, 55 mm fin length and 2mm fin thickness. To contribute in developing an efficient air-heating vaporizer, experiment on finned type air-heating vaporizer using 8 fins, 50mm(fin length) with 2 mm(fin thickness) which exist in the market and 4 fins, 75 mm(fin length) with 2 mm(fin thickness), which is proposed, were conducted. Then, both types of vaporizers are compared. The experiments were conducted in one hour by varying the ambient condition and the length of the vaporizer. The ambient air was controlled so that it has the same temperature, humidity and air velocity with air condition in every season available and the length was varied 4000 mm, 6000 mm and 8000 mm for each type of vaporizer. Additional experiment with longer duration, i.e. In this experiment, the main aspects in analyzing the characteristics of the air heating vaporizer the inlet-outlet enthalpy difference and the outlet temperature of the working fluid. $LN_2$ is used to substitute LNG because of safety reason. The results show that the characteristics of the finned type 4fin75le vaporizer are comparable to finned type 8fin50le vaporizer.

Transient response of rhombic laminates

  • Anish, Anish;Chaubey, Abhay K.;Vishwakarma, Satyam;Kumar, Ajay;Fic, Stanislaw;Barnat-Hunek, Danuta
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.551-562
    • /
    • 2019
  • In the present study, a suitable mathematical model considering parabolic transverse shear strains for dynamic analysis of laminated composite skew plates under different types of impulse and spatial loads was presented for the first time. The proposed mathematical model satisfies zero transverse shear strain at the top and bottom of the plate. On the basis of the cubic variation of thickness coordinate in in-plane displacement fields of the present mathematical model, a 2D finite element (FE) model was developed including skew transformations in the mathematical model. No shear correction factor is required in the present formulation and damping effect was also incorporated. This is the first FE implementation considering a cubic variation of thickness coordinate in in-plane displacement fields including skew transformations to solve the forced vibration problem of composite skew plates. The effect of transverse shear and rotary inertia was incorporated in the present model. The Newmark-${\beta}$ scheme was adapted to perform time integration from step to step. The $C^0$ FE formulation was implemented to overcome the problem of $C^1$ continuity associated with the cubic variation of thickness coordinate in in-plane displacement fields. The numerical studies showed that the present 2D FE model predicts the result close to the analytical results. Many new results varying different parameter such as skew angles, boundary conditions, etc. were presented.

Monochromatic Amber Light Emitting Diode with YAG and CaAlSiN3 Phosphor in Glass for Automotive Applications

  • Lee, Jeong Woo;Cha, Jae Min;Kim, Jinmo;Lee, Hee Chul;Yoon, Chang-Bun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.71-76
    • /
    • 2019
  • Monochromatic amber phosphor in glasses (PiGs) for automotive LED applications were fabricated with $YAG:Ce^{3+}$, $CaAlSiN_3:Eu^{2+}$ phosphors and Pb-free silicate glass. After synthesis and thickness-thinning process, PiGs were mounted on high-power blue LED to make monochromatic amber LEDs. PiGs were simple mixtures of 566 nm yellow YAG, 615 nm red $CaAlSiN_3:Eu^{2+}$ phosphor and transparent glass frit. The powders were uniaxially pressed and treated again through CIP (cold isostatic pressing) at 200 MPa for 20 min to increase packing density. After conventional thermal treatment at $550^{\circ}C$ for 30 min, PiGs were applied by using GPS (gas pressure sintering) to obtain a fully dense PiG plate. As the phosphor content increased, the density of the sintered body decreased and PiGs containing 30 wt% phosphor had full sintered density. Changes in photoluminescence spectra and color coordination were investigated by varying the ratio of $YAG/CaAlSiN_3$ and the thickness of the plates. Considering the optical spectrum and color coordinates, PiG plates with $240{\mu}m$ thickness showed a color purity of 98% and a wavelength of about 605 nm. Plates exhibit suitable optical characteristics as amber light-converting material for automotive LED applications.

The bearing capacity of monolithic composite beams with laminated slab throughout fire process

  • Lyu, Junli;Zhou, Shengnan;Chen, Qichao;Wang, Yong
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.87-102
    • /
    • 2021
  • To investigate the failure form, bending stiffness, and residual bearing capacity of monolithic composite beams with laminated slab throughout the fire process, fire tests of four monolithic composite beams with laminated slab were performed under constant load and temperature increase. Different factors such as post-pouring layer thickness, lap length of the prefabricated bottom slab, and stud spacing were considered in the fire test. The test results demonstrate that, under the same fire time and external load, the post-pouring layer thickness and stud spacing are important parameters that affect the fire resistance of monolithic composite beams with laminated slab. Similarly, the post-pouring layer thickness and stud spacing are the predominant factors affecting the bending stiffness of monolithic composite beams with laminated slab after fire exposure. The failure forms of monolithic composite beams with laminated slab after the fire are approximately the same as those at room temperature. In both cases, the beams underwent bending failure. However, after exposure to the high-temperature fire, cracks appeared earlier in the monolithic composite beams with laminated slab, and both the residual bearing capacity and bending stiffness were reduced by varying degrees. In this test, the bending bearing capacity and ductility of monolithic composite beams with laminated slab after fire exposure were reduced by 23.3% and 55.4%, respectively, compared with those tested at room temperature. Calculation methods for the residual bearing capacity and bending stiffness of monolithic composite beams with laminated slab in and after the fire are proposed, which demonstrated good accuracy.

Assessment of the characteristics of ferro-geopolymer composite box beams under flexure

  • Dharmar Sakkarai;Nagan Soundarapandian
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.251-267
    • /
    • 2023
  • In this paper, an experimental investigation is carried out to assess the inherent self-compacting properties of geopolymer mortar and its impact on flexural strength of thin-walled ferro-geopolymer box beam. The inherent self-compacting properties of the optimal mix of normal geopolymer mortar was studied and compared with self-compacting cement mortar. To assess the flexural strength of box beams, a total of 3 box beams of size 1500 mm × 200 mm × 150 mm consisting of one ferro-cement box beam having a wall thickness of 40 mm utilizing self-compacting cement mortar and two ferro-geopolymer box beams with geopolymer mortar by varying the wall thickness between 40 mm and 50 mm were moulded. The ferro-cement box beam was cured in water and ferro-geopolymer box beams were cured in heat chamber at 75℃ - 80℃ for 24 hours. After curing, the specimens are subjected to flexural testing by applying load at one-third points. The result shows that the ultimate load carrying capacity of ferro-geopolymer and ferro-cement box beams are almost equal. In addition, the stiffness of the ferro-geoploymer box beam is reduced by 18.50% when compared to ferro-cement box beam. Simultaneously, the ductility index and energy absorption capacity are increased by 88.24% and 30.15%, respectively. It is also observed that the load carrying capacity and stiffness of ferro-geopolymer box beams decreases when the wall thickness is increased. At the same time, the ductility and energy absorption capacity increased by 17.50% and 8.25%, respectively. Moreover, all of the examined beams displayed a shear failure pattern.

Comparison of Characteristics of Gamma-Ray Imager Based on Coded Aperture by Varying the Thickness of the BGO Scintillator

  • Seoryeong Park;Mark D. Hammig;Manhee Jeong
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.4
    • /
    • pp.214-225
    • /
    • 2022
  • Background: The conventional cerium-doped Gd2Al2Ga3O12 (GAGG(Ce)) scintillator-based gamma-ray imager has a bulky detector, which can lead to incorrect positioning of the gammaray source if the shielding against background radiation is not appropriately designed. In addition, portability is important in complex environments such as inside nuclear power plants, yet existing gamma-ray imager based on a tungsten mask tends to be weighty and therefore difficult to handle. Motivated by the need to develop a system that is not sensitive to background radiation and is portable, we changed the material of the scintillator and the coded aperture. Materials and Methods: The existing GAGG(Ce) was replaced with Bi4Ge3O12 (BGO), a scintillator with high gamma-ray detection efficiency but low energy resolution, and replaced the tungsten (W) used in the existing coded aperture with lead (Pb). Each BGO scintillator is pixelated with 144 elements (12 × 12), and each pixel has an area of 4 mm × 4 mm and the scintillator thickness ranges from 5 to 20 mm (5, 10, and 20 mm). A coded aperture consisting of Pb with a thickness of 20 mm was applied to the BGO scintillators of all thicknesses. Results and Discussion: Spectroscopic characterization, imaging performance, and image quality evaluation revealed the 10 mm-thick BGO scintillators enabled the portable gamma-ray imager to deliver optimal performance. Although its performance is slightly inferior to that of existing GAGG(Ce)-based gamma-ray imager, the results confirmed that the manufacturing cost and the system's overall weight can be reduced. Conclusion: Despite the spectral characteristics, imaging system performance, and image quality is slightly lower than that of GAGG(Ce), the results show that BGO scintillators are preferable for gamma-ray imaging systems in terms of cost and ease of deployment, and the proposed design is well worth applying to systems intended for use in areas that do not require high precision.

Development of Intermittent Coating Process Using Roll-to-roll Slot-die Coater (롤투롤 슬롯 다이 코터를 이용한 간헐 코팅 공정 개발)

  • Mose Jung;Gieun Kim;Jeongpil Na;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.32-37
    • /
    • 2023
  • For the potential applications in large-area OLED lightings, hydrogen fuel cells, and secondary batteries, we have performed an intermittent coating of high-viscosity polydimethylsiloxane using roll-to-roll slot die coater. During intermittent coating, dead zones inevitably appear where the thickness of PDMS patch films becomes non-uniform, especially at the leading/trailing edge. To reduce it, we have coated the PDMS patches by varying the process parameters such as the installation angle of the slot die head, coating speed, and patch interval. It is observed that the PDMS solution flows down and thus the thickness profile is non-uniform for horizonal intermittent coating, whereas the PDMS solution remaining on the head lip causes an increase in the PDMS thickness at the leading/trailing edges for vertical intermittent coating when the coating velocity is low. As the coating speed increases, however, the dead zone is shown to be reduced. It is addressed that the overall dead zone (the dead zone at the leading edge + the dead zone at the trailing edge) is smaller with horizontal intermittent coating than with vertical intermittent coating.

  • PDF

The emissivity and opto-electrical properties of ZnO/Cu/ZnO thin films for the vehicle applications (ZnO/Cu/ZnO 박막의 차량용 저방사 및 전기광학적 특성 연구)

  • Yeon-Hak Lee;Sun-Kyung Kim;Tae-Yong Eom;Yong-Ha Jeong;Sang-Woo So;Young-Gil Son;Dong-Il Son;Daeil Kim
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.6
    • /
    • pp.451-456
    • /
    • 2023
  • Transparent conducting films having a three layered structure of ZnO/Cu/ZnO (ZCZ) were deposited onto the glass substrates by using RF and DC magnetron sputtering at room temperature. The emissivity and opto-electrical properties of the films were investigated with a varying thickness(5, 10, 15 nm) of the Cu interlayer. With increasing the Cu thickness to 15 nm, the films showed a enhanced electrical properties. Although ZnO 30/Cu 15/ZnO 30 nm film shows a lower resistivity of 5.2×10-5 Ωcm, it's visible transmittance is deteriorated by increased optical absorbtion of the films. In addition, X-ray diffraction patterns indicated that the insertion of Cu interlayer improve the grain size of ZnO films, which is favor for the electrical and optical properties of transparent conducting films. From the observed low emissivity of the films, it is concluded that the ZCZ thin films with optimal thickness of Cu interlayer can be applied effectively for the car's window coating materials.

Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations

  • Djamel Eddine Lafi;Abdelhakim Bouhadra;Belgacem Mamen;Abderahmane Menasria;Mohamed Bourada;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.103-119
    • /
    • 2024
  • The present research investigates the thermodynamically bending behavior of FG sandwich plates, laying on the Winkler/Pasternak/Kerr foundation with various boundary conditions, subjected to harmonic thermal load varying through thickness. The supposed FG sandwich plate has three layers with a ceramic core. The constituents' volume fractions of the lower and upper faces vary gradually in the direction of the FG sandwich plate thickness. This variation is performed according to various models: a Power law, Trigonometric, Viola-Tornabene, and the Exponential model, while the core is constantly homogeneous. The displacement field considered in the current work contains integral terms and fewer unknowns than other theories in the literature. The corresponding equations of motion are derived based on Hamilton's principle. The impact of the distribution model, scheme, aspect ratio, side-to-thickness ratio, boundary conditions, and elastic foundations on thermodynamic bending are examined in this study. The deflections obtained for the sandwich plate without elastic foundations have the lowest values for all boundary conditions. In addition, the minimum deflection values are obtained for the exponential volume fraction law model. The sandwich plate's non-dimensional deflection increases as the aspect ratio increases for all distribution models.

Comparative analysis of TiO2, Fe2O3, CaO and CuO in borate based glasses for gamma ray shielding

  • Heba Jamal Alasali;U. Rilwan;K.A. Mahmoud;Taha A. Hanafy;M.I. Sayyed
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4050-4055
    • /
    • 2024
  • This research intends to utilize melt-quenching technique in order to examine the radiation shielding capability of 10 % Mo, 10 % Na2O, 20 % PbO, and 60 % B2O3 glass system, with varying CaO, TiO2, CuO, Fe2O3 or Mo. XCOM and MCNP simulations were utilized to analyze the radiation shielding properties of the fabricated glasses. The results revealed CuO having the superior MAC of 49.91 cm2/g, then Fe2O3 with 49.24 cm2/g, followed by CaO with 49.10 cm2/g, and TiO2 with 48.49 cm2/g as the least. CuO and Fe2O3 were confirmed to have least HVL compared to CaO and TiO2. The value of the lead equivalent thickness showed fluctuation against the gamma energy, where it raisess within the photoelectric region and falls after the photoelectric region. The data reveal that, the lead equivalent thickness at 0.1 MeV were 7.88 cm, 7.86 cm, 7.81 cm and 7.80 cm for TiO2, Fe2O3, CaO, and CuO in the same order, respectively. The transmission factor (TF) raises as the gamma energy raises, having TiO2 as the highest with 76.068 %, while the radiation protection efficiency dropped as the energy raises.