• Title/Summary/Keyword: variant approach

Search Result 135, Processing Time 0.026 seconds

A new damage identification approach based on impedance-type measurements and 2D error statistics

  • Providakis, Costas;Tsistrakis, Stavros;Voutetaki, Maristella;Tsompanakis, Yiannis;Stavroulaki, Maria;Agadakos, John;Kampianakis, Eleftherios;Pentes, George
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.4
    • /
    • pp.319-338
    • /
    • 2015
  • The electro-mechanical impedance (EMI) technique makes use of surface-bonded lead zirconate titanate (PZT) patches as impedance transducers measuring impedance variations monitored on host structural components. The present experimental work further evaluate an alternative to the conventional EMI technique which performs measurements of the variations in the output voltage of PZT transducers rather than computing electromechanical impedance (or admittance) itself. This paper further evaluates a variant of the EMI approach presented in a previous work of the present authors, suitable, for low-cost concrete structures monitoring applications making use of a credit card-sized Raspberry Pi single board computer as core hardware unit. This monitoring approach is also deployed by introducing a new damage identification index based on the ratio between the area of the 2-D error ellipse of specific probability of EMI-based measurements containment over that of the 2-D error circle of equivalent probability. Experimental results of damages occurring in concrete cubic and beam specimens are investigated under increasing loading conditions. Results illustrate that the proposed technique is an efficient approach for identification and early detection of damage in concrete structures.

Control Law Design for a Tilt-rotor Unmanned Aerial Vehicle with a Nacelle Mounted WE (Wing Extension) (체공성능 향상을 위한 확장날개 틸트로터 무인기의 제어법칙설계)

  • Kang, Young-Shin;Park, Bum-Jin;Cho, Am;Yoo, Chang-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1103-1111
    • /
    • 2014
  • The results of control law design for a tilt-rotor unmanned aerial vehicle that has a nacelle mounted wing extension (WE) are presented in this paper. It consists of a control surface mixer, stability and control augmentation system (SCAS), hold mode for altitude / speed / heading, and a guidance mode for preprogram and point navigation which includes automatic take-off and landing. The conversion corridor and the control moments derivatives between the original tilt-rotor and its variant of the nacelle mounted WE were compared to show the effectiveness of the WE. The nacelle conversion of the original tilt-rotor starts when the airspeed is greater than 30 km/h but its WE variant starts at 0 km/h in order to reduce the drag caused by the high incidence angle of the WE. The stability margins of the inner loop are presented with the optimization approach. The outer loops for the hold mode are designed with trial and error methods with linear and nonlinear simulation. The main control parameter for altitude control of the helicopter mode is thrust command and it is transferred to the pitch attitude command in airplane mode. Otherwise, the control parameter for the speed of the helicopter mode is the pitch attitude command and it is transferred to the thrust command in airplane mode. Therefore the speed and altitude hold mode are coupled to each other and are engaged at the same time when an internal pilot engages any of the altitude or speed hold modes. The nonlinear simulation results of the guidance control for the preprogrammed mode and point navigation are also presented including automatic take-off and landing in order to prove the full control law.

Traffic Sign Recognition by the Variant-Compensation and Circular Tracing (변형 보정과 원형 추적법에 의한 교통 표지판 인식)

  • Lee, Woo-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.3
    • /
    • pp.188-194
    • /
    • 2008
  • We propose the new method for the traffic signs recognition that is one of the DAS(Driving assistance system) in the intelligent vehicle. Our approach estimates a varied degree by using a geometric method from the varied traffic signs in noise, rotation and size, and extracts the recognition symbol from the compensated traffic sign for a recognition by using the sequential color-based clustering. This proposed clustering method classify the traffic sign into the attention, regulation, indication, and auxiliary class. Also, The circular tracing method is used for the final traffic sign recognition. To evaluate the effectiveness of the proposed method, varied traffic signs were built. As a result, The proposed method show that the 95 % recognition rate for a single variation, and 93 % recognition rate for a mixed variation.

  • PDF

Identification of Novel Functional Variants of SIN3A and SRSF1 among Somatic Variants in Acute Myeloid Leukemia Patients

  • Min, Jae-Woong;Koh, Youngil;Kim, Dae-Yoon;Kim, Hyung-Lae;Han, Jeong A;Jung, Yu-Jin;Yoon, Sung-Soo;Choi, Sun Shim
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.465-475
    • /
    • 2018
  • The advent of massively parallel sequencing, also called next-generation sequencing (NGS), has dramatically influenced cancer genomics by accelerating the identification of novel molecular alterations. Using a whole genome sequencing (WGS) approach, we identified somatic coding and noncoding variants that may contribute to leukemogenesis in 11 adult Korean acute myeloid leukemia (AML) patients, with serial tumor samples (primary and relapse) available for 5 of them; somatic variants were identified in 187 AML-related genes, including both novel (SIN3A, C10orf53, PTPRR, and RERGL) and well-known (NPM1, RUNX1, and CEPBA) AML-related genes. Notably, SIN3A expression shows prognostic value in AML. A newly designed method, referred to as "hot-zone" analysis, detected two putative functional noncoding variants that can alter transcription factor binding affinity near PPP1R10 and SRSF1. Moreover, the functional importance of the SRSF1 noncoding variant was further investigated by luciferase assays, which showed that the variant is critical for the regulation of gene expression leading to leukemogenesis. We expect that further functional investigation of these coding and noncoding variants will contribute to a more in-depth understanding of the underlying molecular mechanisms of AML and the development of targeted anti-cancer drugs.

An Efficient Channel Tracking Method in MIMO-OFDM Systems (MIMO-OFDM에서 효율적인 채널 추적 방식)

  • Jeon, Hyoung-Goo;Kim, Kyoung-Soo;Ahn, Ji-Whan;Serpedin, Erchin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.256-268
    • /
    • 2008
  • This paper proposes an efficient scheme to track the time variant channel induced by multi-path Rayleigh fading in mobile wireless Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems with null sub-carriers. In the proposed method, a blind channel response predictor is designed to cope with the time variant channel. The proposed channel tracking scheme consists of a frequency domain estimation approach that is coupled with a Minimum Mean Square Error (MMSE) time domain estimation method, and does not require any matrix inverse calculation during each OFDM symbol. The main attributes of the proposed scheme are its reduced computational complexity and good tracking performance of channel variations. The simulation results show that the proposed method exhibits superior performance than the conventional channel tracking method [4] in time varying channel environments. At a Doppler frequency of 100Hz and bit error rates (BER) of 10-4, signal-to-noise power ratio (Eb/N0) gains of about 2.5dB are achieved relative to the conventional channel tracking method [4]. At a Doppler frequency of 200Hz, the performance difference between the proposed method and conventional one becomes much larger.

Effect of perforation patterns on the fundamental natural frequency of microsatellite structure

  • Ahmad M. Baiomy;M. Kassab;B.M. El-Sehily;R.M. El-Kady
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.223-243
    • /
    • 2023
  • There is a burgeoning demand for minimizing the mass of satellites because of its direct impact on reducing launch-to-orbit cost. This must be done without compromising the structure's efficiency. The present paper introduces a relatively low-cost and easily implementable approach for optimizing structural mass to a maximum natural frequency. The natural frequencies of the satellite are of utmost pertinence to the application requirements, as the sensitive electronic instrumentation and onboard computers should not be affected by the vibrations of the satellite structure. This methodology is applied to a realistic model of Al-Azhar University micro-satellite in partnership with the Egyptian Space Agency. The procedure used in structural design can be summarized in two steps. The first step is to select the most favorable primary structural configuration among several different candidate variants. The nominated variant is selected as the one scoring maximum relative dynamic stiffness. The second step is to use perforation patterns reduce the overall mass of structural elements in the selected variant without changing the weight. The results of the presented procedure demonstrate that the mass reduction percentage was found to be 39% when compared to the unperforated configuration that had the same plate thickness. The findings of this study challenge the commonly accepted notion that isogrid perforations are the most effective means of achieving the goal of reducing mass while maintaining stiffness. Rather, the study highlights the potential benefits of exploring a wider range of perforation unit cells during the design process. The study revealed that rectangular perforation patterns had the lowest efficiency in terms of modal stiffness, while triangular patterns resulted in the highest efficiency. These results suggest that there may be significant gains to be made by considering a broader range of perforation shapes and configurations in the design of lightweight structures.

A biceps-bicaudatus sartorius muscle: dissection of a variant with possible clinical implications

  • Konstantinos Natsis;Christos Koutserimpas;Trifon Totlis;George Triantafyllou;George Tsakotos;Katerina Al Nasraoui;Filippos Karageorgos;Maria Piagkou
    • Anatomy and Cell Biology
    • /
    • v.57 no.1
    • /
    • pp.143-146
    • /
    • 2024
  • The current cadaveric report describes an unusual morphology of the sartorius muscle (SM), the biceps-bicaudatus variant. The SM had two (lateral and medial) heads, with distinct tendinous origins from the anterior superior iliac spine. The lateral head was further split into a lateral and a medial bundle. The anterior cutaneous branch of the femoral nerve emerged between the origins of the lateral and medial heads. SM morphological variants are exceedingly uncommon, with only a few documented cases in the literature, and several terms used for their description. Although their rare occurrence, they may play an important role in the differential diagnosis of entrapment syndromes, in cases of neural compressions, such as meralgia paresthetica, while careful dissection during the superficial inter-nervous plane of the direct anterior hip approach is of utmost importance, to avoid adverse effects due to the altered SM morphology.

Risk assessment of transmission line structures under severe thunderstorms

  • Li, C.Q.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.773-784
    • /
    • 1998
  • To assess the collapse risk of transmission line structures subject to natural hazards, it is important to identify what hazard may cause the structural collapse. In Australia and many other countries, a large proportion of failures of transmission line structures are caused by severe thunderstorms. Because the wind loads generated by thunderstorms are not only random but time-variant as well, a time-dependent structural reliability approach for the risk assessment of transmission line structures is essential. However, a lack of appropriate stochastic models for thunderstorm winds usually makes this kind of analysis impossible. The intention of the paper is to propose a stochastic model that could realistically and accurately simulate wind loading due to severe thunderstorms. With the proposed thunderstorm model, the collapse risk of transmission line structures under severe thunderstorms is assessed numerically based on the computed failure probability of the structure.

Identification of Incorrect Data Labels Using Conditional Outlier Detection

  • Hong, Charmgil
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.915-926
    • /
    • 2020
  • Outlier detection methods help one to identify unusual instances in data that may correspond to erroneous, exceptional, or surprising events or behaviors. This work studies conditional outlier detection, a special instance of the outlier detection problem, in the context of incorrect data label identification. Unlike conventional (unconditional) outlier detection methods that seek abnormalities across all data attributes, conditional outlier detection assumes data are given in pairs of input (condition) and output (response or label). Accordingly, the goal of conditional outlier detection is to identify incorrect or unusual output assignments considering their input as condition. As a solution to conditional outlier detection, this paper proposes the ratio-based outlier scoring (ROS) approach and its variant. The propose solutions work by adopting conventional outlier scores and are able to apply them to identify conditional outliers in data. Experiments on synthetic and real-world image datasets are conducted to demonstrate the benefits and advantages of the proposed approaches.

Color Image Enhancement Based on Adaptive Nonlinear Curves of Luminance Features

  • Cho, Hosang;Kim, Geun-Jun;Jang, Kyounghoon;Lee, Sungmok;Kang, Bongsoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.60-67
    • /
    • 2015
  • This paper proposes an image-dependent color image enhancement method that uses adaptive luminance enhancement and color emphasis. It effectively enhances details of low-light regions while maintaining well-balanced luminance and color information. To compare the structure similarity and naturalness, we used the tone mapped image quality index (TMQI). The proposed method maintained better structure similarity in the enhanced image than did the space-variant luminance map (SVLM) method or the adaptive and integrated neighborhood dependent approach for nonlinear enhancement (AINDANE). The proposed method required the smallest computation time among the three algorithms. The proposed method can be easily implemented using the field-programmable gate array (FPGA), with low hardware resources and with better performance in terms of similarity.