• Title/Summary/Keyword: variance estimation.

Search Result 737, Processing Time 0.02 seconds

Variance function estimation with LS-SVM for replicated data

  • Shim, Joo-Yong;Park, Hye-Jung;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.925-931
    • /
    • 2009
  • In this paper we propose a variance function estimation method for replicated data based on averages of squared residuals obtained from estimated mean function by the least squares support vector machine. Newton-Raphson method is used to obtain associated parameter vector for the variance function estimation. Furthermore, the cross validation functions are introduced to select the hyper-parameters which affect the performance of the proposed estimation method. Experimental results are then presented which illustrate the performance of the proposed procedure.

  • PDF

A Study on Individual Tap-Power Estimation for Improvement of Adaptive Equalizer Performance

  • Kim, Nam-Yong
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.1
    • /
    • pp.23-29
    • /
    • 2004
  • In this paper we analyze convergence constraints and time constant of IT-LMS algorithm and derive a method of making it's time constant independent of signal power by using input variance estimation. The method for estimating the input variance is to use a single-pole low-pass filter(LPF) with common smoothing parameter value, θ. The estimator is with narrow bandwidth for large θ but with wide bandwidth for small θ. This small θ gives long term average estimation(low frequency) of the fluctuating input variance well as short term variations (high frequency) of the input power. In our simulations of multipath communication channel equalization environments, the method with large θ has shown not as much improved convergence speed as the speed of the original IT-LMS algorithm. The proposed method with small θ=0.01 reach its minimum MSE in 100 samples whereas the IT-LMS converges in 200 samples. This shows the proposed, tap-power normalized IT-LMS algorithm can be applied more effectively to digital wireless communication systems.

Investigation of multiple imputation variance estimation

  • Kim, Jae-Kwang
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.183-188
    • /
    • 2002
  • Multiple imputation, proposed by Rubin, is a procedure for handling missing data. One of the attractive parts of multiple imputation is the simplicity of the variance estimation formula. Because of the simplicity, it has been often abused and misused beyond its original prescription. This paper provides the bias of the multiple imputation variance estimator for a linear point estimator and discusses when the bias can be safely neglected.

  • PDF

Minimum Variance Unbiased Estimation for the Maximum Entropy of the Transformed Inverse Gaussian Random Variable by Y=X-1/2

  • Choi, Byung-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.657-667
    • /
    • 2006
  • The concept of entropy, introduced in communication theory by Shannon (1948) as a measure of uncertainty, is of prime interest in information-theoretic statistics. This paper considers the minimum variance unbiased estimation for the maximum entropy of the transformed inverse Gaussian random variable by $Y=X^{-1/2}$. The properties of the derived UMVU estimator is investigated.

EFFICIENT REPLICATION VARIANCE ESTIMATION FOR TWO-PHASE SAMPLING

  • Kim, Jae-Kwang;Sitter, Randy
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.327-332
    • /
    • 2002
  • Variance estimation for the regression estimator for a two-phase sample is investigated. A replication variance estimator with number of replicates equal to or slightly larger than the size of the second-phase sample is developed. In these cases, the proposed method is asymptotically equivalent to the full jackknife, but uses smaller number of replications.

  • PDF

FURTHER BOUNDS FOR THE ESTIMATION ERROR VARIANCE OF A CONTINUOUS STREAM WITH STATIONARY VARIOGRAM

  • DRAGOMIR, S.S.;BARNETT, N.S.;GOMM, I.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.101-107
    • /
    • 2000
  • In this paper we establish an upper bound for the estimation error variance of a continuous stream with a stationary variogram V which is assumed to be of the r-Holder type (Lipschitzian) on [-d, d]. Functional properties for the mapping ${\xi}(t):=E[(X-X(t))^2]$, $t{\in}[0,d]$, are also given.

  • PDF

Estimation and Variance Estimation for the U.S. Consumer Expenditures Surveys Redesign Research

  • Kim, Jong-Ik
    • Journal of the Korean Statistical Society
    • /
    • v.12 no.1
    • /
    • pp.36-45
    • /
    • 1983
  • After every decennial census in the U.S., national surveys such as the Consumer Expenditures surveys are redesigned. The redesigned samples will be multi-stage systematic samples. Many sampling schemes have been proposed for comparison which requires the estimation and variance estiamtion formula. This paper deals with the surveys redesign research which concerns the sample design within the Primary Sampling Unit (PSU). In constructing the estimators it deals with the problem of which first stage inflation factor to use. The expected value of the proposed estimators is also derived.

  • PDF

Case study: application of fused sliced average variance estimation to near-infrared spectroscopy of biscuit dough data (Fused sliced average variance estimation의 실증분석: 비스킷 반죽의 근적외분광분석법 분석 자료로의 적용)

  • Um, Hye Yeon;Won, Sungmin;An, Hyoin;Yoo, Jae Keun
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.835-842
    • /
    • 2018
  • The so-called sliced average variance estimation (SAVE) is a popular methodology in sufficient dimension reduction literature. SAVE is sensitive to the number of slices in practice. To overcome this, a fused SAVE (FSAVE) is recently proposed by combining the kernel matrices obtained from various numbers of slices. In the paper, we consider practical applications of FSAVE to large p-small n data. For this, near-infrared spectroscopy of biscuit dough data is analyzed. In this case study, the usefulness of FSAVE in high-dimensional data analysis is confirmed by showing that the result by FASVE is superior to existing analysis results.

Preliminary test estimation method accounting for error variance structure in nonlinear regression models (비선형 회귀모형에서 오차의 분산에 따른 예비검정 추정방법)

  • Yu, Hyewon;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.595-611
    • /
    • 2016
  • We use nonlinear regression models (such as the Hill Model) when we analyze data in toxicology and/or pharmacology. In nonlinear regression models an estimator of parameters and estimation of measurement about uncertainty of the estimator are influenced by the variance structure of the error. Thus, estimation methods should be different depending on whether the data are homoscedastic or heteroscedastic. However, we do not know the variance structure of the error until we actually analyze the data. Therefore, developing estimation methods robust to the variance structure of the error is an important problem. In this paper we propose a method to estimate parameters in nonlinear regression models based on a preliminary test. We define an estimator which uses either the ordinary least square estimation method or the iterative weighted least square estimation method according to the results of a simple preliminary test for the equality of the error variance. The performance of the proposed estimator is compared to those of existing estimators by simulation studies. We also compare estimation methods using real data obtained from the National Toxicology program of the United States.