• 제목/요약/키워드: variable reluctance motor

검색결과 104건 처리시간 0.036초

SRM 드라이브의 강인한 운전을 위한 PLL 제어 방식 (PLL Control Scheme for Robust Driving of SRM Drive)

  • 오석규;정태욱;박한웅;안진우;황영문
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권9호
    • /
    • pp.461-466
    • /
    • 1999
  • The switched reluctance motor (SRM) would have torque ripple if not operated with an MMF waveform specified for switching angle and phase voltage. This paper describes the robustic control scheme that permits the phase torque to be flat by PLL(Phase Locked Loop) controller. In this control scheme, the locked phase signal of PLL controls the switching dwell angle and it's loop filter signal controls the switching voltage adaptively. Experimental results show that stable dynamic performance is obtained for torque and speed together with low torque ripple on the operation of variable loads.

  • PDF

2차원 FEM과 3차원 등가자기회로방법을 이용한 SRM의 최적 설계 (Optimal design of switched reluctance motor using 2D FEM and 3D equivalent magnetic circuit network method)

  • 정성인;김윤현;이주;김학련
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.125-127
    • /
    • 2001
  • Switched reluctance motor (SRM) has some advantages such as low cost, high torque density etc. However SRM has inevitably high torque ripple due to the double salient structure. To apply SRM to industrial field, we have to minimize torque ripple, which is the weak-Point of SRM. This paper presents optimal design process of SRM using numerical method such as 2D finite element method (FEM) and 3D equivalent magnetic circuit network method (EMCNM). The electrical and geometrical design parameters have been adopted as 2D design variables. The overhang structure of rotor has been also adopted as 3D design variable. From this work, we can obtain the optimal design, which minimize the torque ripple and maximize energy conversion loop.

  • PDF

SynRM Servo-Drive CVT Systems Using MRRHPNN Control with Mend ACO

  • Ting, Jung-Chu;Chen, Der-Fa
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1409-1423
    • /
    • 2018
  • Compared with classical linear controllers, a nonlinear controller can result in better control performance for the nonlinear uncertainties of continuously variable transmission (CVT) systems that are driven by a synchronous reluctance motor (SynRM). Improved control performance can be seen in the nonlinear uncertainties behavior of CVT systems by using the proposed mingled revised recurrent Hermite polynomial neural network (MRRHPNN) control with mend ant colony optimization (ACO). The MRRHPNN control with mend ACO can carry out the overlooker control system, reformed recurrent Hermite polynomial neural network (RRHPNN) control with an adaptive law, and reimbursed control with an appraised law. Additionally, in accordance with the Lyapunov stability theorem, the adaptive law in the RRHPNN and the appraised law of the reimbursed control are established. Furthermore, to help improve convergence and to obtain better learning performance, the mend ACO is utilized for adjusting the two varied learning rates of the two parameters in the RRHPNN. Finally, comparative examples are illustrated by experimental results to confirm that the proposed control system can achieve better control performance.

SynRM Driving CVT System Using an ARGOPNN with MPSO Control System

  • Lin, Chih-Hong;Chang, Kuo-Tsai
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.771-783
    • /
    • 2019
  • Due to nonlinear-synthetic uncertainty including the total unknown nonlinear load torque, the total parameter variation and the fixed load torque, a synchronous reluctance motor (SynRM) driving a continuously variable transmission (CVT) system causes a lot of nonlinear effects. Linear control methods make it hard to achieve good control performance. To increase the control performance and reduce the influence of nonlinear time-synthetic uncertainty, an admixed recurrent Gegenbauer orthogonal polynomials neural network (ARGOPNN) with a modified particle swarm optimization (MPSO) control system is proposed to achieve better control performance. The ARGOPNN with a MPSO control system is composed of an observer controller, a recurrent Gegenbauer orthogonal polynomial neural network (RGOPNN) controller and a remunerated controller. To insure the stability of the control system, the RGOPNN controller with an adaptive law and the remunerated controller with a reckoned law are derived according to the Lyapunov stability theorem. In addition, the two learning rates of the weights in the RGOPNN are regulating by using the MPSO algorithm to enhance convergence. Finally, three types of experimental results with comparative studies are presented to confirm the usefulness of the proposed ARGOPNN with a MPSO control system.

VVS구동 스위치드 릴럭턴스 전동기의 동작특성 (Performance of Switched Reluctance Motor driven by Variable Voltage Source)

  • 안영주;안진우;조철제;황영문
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.169-171
    • /
    • 1994
  • This paper suggests a SRM control scheme driven by a variable voltage source. This scheme shows that it is unnecessary to introduce a switch to control dc-link voltage and to limit a phase current. And its vary easy to build-up flat-topped phase current which is advantageous to the high torque and efficiency drive of a SRM. Experimental tests are shown to verify this suggestion.

  • PDF

A Study of Control Method of SRM for Variable Speed Control

  • Park, Heesung;Hwang, Yeongseong;Seong, Sejin;Choi, Jaedong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.754-757
    • /
    • 1998
  • In this paper, the fuzzy control logic of Switched Reluctance Motor(SRM) is introduced to apply the variable speed drive system. Since the speed-torque property of SRM has high speed variation to the changes of torque like a DC motor, to apply SRM to the variable speed driving system, the optimal speed-torque control method is required. As the control method like this, the fuzzy logic and PI control are proposed, and characteristics of them are compared and verified through the experimental results

  • PDF

퍼지제어기를 이용한 스윗치드 리럭탄스 전동기의 속도제어 (Variable Speed SRM Drive System with Fuzzy Controller)

  • 김창현;권영안;김철우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.6-8
    • /
    • 1994
  • Switched reluctance motor drive system is well known as a variable speed drive system because it has a simple motor structure and a simple driving circuit. Widely slotted photo interrupter has been investigated as a position sensor for SRM speed control because it has advantages of low cost and simple structure. However it has low resolution and it produces dead-time signal. This paper studies variable speed SRM drive system with slotted photo-interrupter. Controller in this study is constructed by using fuzzy controller that covers system nonlinearities and small perturbations in sufficiency. The performance of this system is evaluated through computer simulation and experiment results.

  • PDF

Microstep Stepper Motor Control Based on FPGA Hardware Implementation

  • Chivapreecha, Sorawat;Dejhan, Kobchai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.93-97
    • /
    • 2005
  • This paper proposes a design of stepper motor control in microstep driven mode using FPGA (Field Programmable Gate Array) for hardware implementation. The methods to drive stepper motor in microstep excitation mode are to control of the controlling currents in each phase windings of stepper motor with reference signals. These reference signals are used for controlling the current levels, the required variation of current levels with rotor position can be obtained from the ideal linear or sinusoidal approximations to the static torque-displacement ($T-{\theta}$) characteristic curve. In addition, the hardware implementation of stepper motor controller can be designed uses VHDL (Very high speed integrated circuits Hardware Description Language) and synthesis using an Altera FPGA, FLEX10K family, EPF10K20RC240-4 device as target technology and use MAX+PlusII program for overall development. A multi-stack variable-reluctance stepper motor of Sanyo Denki is used in the experiments.

  • PDF

4상 SRM의 구동 특성해석 (A Characteristic Analysis of Four-Phase SRM)

  • 김태형;안진우;이동희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.988-991
    • /
    • 2004
  • In the paper, a four-phase 16/12 structure Switched Reluctance motor drive is presented. The construction of the stator and the rotor in the motor, the scheme of the rotor position detector and the main circuit of the power converter are described. The comparison of the four-phase 16/12 motor and the four-phase 8/6 motor and the comparison of the four-phase 16/12 motor and the three-phase 12/8 motor are made. In the controller, the PWM control variable-speed control, the commutation control, the four quadrants control, the overvoltage protection, the over current protection and the under voltage protection could be achieved. Tested results of the developed prototype are made.

  • PDF

4상 16/12극 SRM의 특성해석 (A Characteristic Analysis of Four-Phase 16/12 SRM)

  • 송현수;이동희;안진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.415-418
    • /
    • 2002
  • In the paper, a four-phase 16/12 structure Switched Reluctance motor drive is presented. The construction of the stator and the rotor in the motor, the scheme of the rotor position detector and the main circuit of the power converter are described. The comparison of the four-phase 16/12 motor and the four-phase 816 motor and the comparison of the four-phase 16/12 motor and the three-phase 12/8 motor are made. In the controller, the PWM control variable-speed control, the commutation control, the four quadrants control, the overvoltage protection, the overcurrent protection and the under voltage protection could be achieved. Tested results of the developed prototype are made.

  • PDF