• Title/Summary/Keyword: variable parameter

Search Result 1,103, Processing Time 0.025 seconds

A Study on the Suitable Number of the Exhaust Variable Valve Spring for Semi-active Muffler (반능동형 머플러의 배기가변밸브 스프링 적정상수에 관한 연구)

  • Park Se-Jong;Seo Ho-Chul;Son Sung-Man;Park Kyoung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.137-142
    • /
    • 2006
  • The muffler which reduce the exhaust noise and vibration from engine influence on the engine performance. Recently, exhaust variable valve has set up in the muffler controls the backpressure in the exhaust system. And the backpressure variation according to the exhaust variable valve opening has developed the engine performance. First, the preceding of structural analysis is needed and simulation experiment is requested for the study on the design factor to influence on the operation of the exhaust variable valve. In this study, setting up the various variables according to each composition element needed for the structural analysis of the exhaust variable valve, it is experimented the analysis on the influence of each design factor with the calculation of stress distribution and the displacement to cause about the backpressure for the valve through parameter study.

Study of Direct Parameter Estimation for Neyman-Scott Rectangular Pulse Model (Neyman-Scott 구형 펄스모형의 직접적인 매개변수 추정연구)

  • Jeong, Chang-Sam
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.1017-1028
    • /
    • 2009
  • NSRPM (Neyman-Scott Rectangular Pulse Model) is one of the common model for generating future precipitation time series in stochastical hydrology. There are 5 parameters to compose the NSRPM model for generating precipitation time series. Generally parameter estimation using moment has some problems related with increased objective functions and shows different results in accordance with random variable generating models. In this study, direct parameter estimation method was proposed to cover with disadvantages of parameter estimation using moment. To apply the direct parameter estimation, generating stochastical data variance in accordance with numbers of precipitation events of NSRPM was done. Both kinds of methods were applied at the Cheongju gauge station data. Precipitation time series were generated using 4 different random variable generator, and compared with observed time series to check the accuracies. As a results, direct method showed more stable and better results.

Parameter Identification of Induction Motors using Variable-weighted Cost Function of Genetic Algorithms

  • Megherbi, A.C.;Megherbi, H.;Benmahamed, K.;Aissaoui, A.G.;Tahour, A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.597-605
    • /
    • 2010
  • This paper presents a contribution to parameter identification of a non-linear system using a new strategy to improve the genetic algorithm (GA) method. Since cost function plays an important role in GA-based parameter identification, we propose to improve the simple version of GA, where weights of the cost function are not taken as constant values, but varying along the procedure of parameter identification. This modified version of GA is applied to the induction motor (IM) as an example of nonlinear system. The GA cost function is the weighted sum of stator current and rotor speed errors between the plant and the model of induction motor. Simulation results show that the identification method based on improved GA is feasible and gives high precision.

Chracteristics of the path deviation of the robot manipulator using the variable structure control method (가변 구조 제어 방식을 이용한 로보트 매니플레이터의 경로 이탈 특성)

  • 이홍규;이범희;최계근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.63-66
    • /
    • 1988
  • In the control of the robotic manipulators, the variable structure control method for the get Point Regualation has a advantage of the insensitivity about parameter variations and disturbances. When the robotic manipulators are controlled by a point-to-point scheme, no path constraint is considered. Thus, the variable structure control method will be effectively applied only if the trajectory of the robot hand is estimated precisely. In this paper, the joint trajectories in the joint space and the hand trajectory in the cartesian space are calculated by the variable structure control method, and an algorithm is suggested to elaborate the deviation error of the robot hand from a straight line path. The result of this study will become a base of the effective path planning about robotic manipulators with the variable structure control concept.

  • PDF

Variable-Gain PID Control of Longitudinal Tension in Web Transport System (연속공정 시스템에서의 장력의 가변이득 PID 제어)

  • 신기현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.724-730
    • /
    • 1995
  • Fixed-gain and variable-gain PID control of tension in the winding section of a simple web transport system were evaluated. An open-loop mathematical model for the web transport system was derived and used for the design of the PID controllers. The winding roll radius is a timevarying parameter in the model. The fixed-gain PID controller designed at a particular instant of time could not meet the desired specifications, whereas the variable-gain PID controller could produce accurate tension control in the winding section. An advantage of the variable-gain control is its simplicity. This approach is easy to implement and shows promise for applications where the time-varying parameters are easily measured.

A Study on the Path Deviation of the Robot System by Variable Structure Control (가변구조 제어에 의한 로보트 시스템의 경로 이탈에 관한 연구)

  • 이홍규;이범희;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1601-1609
    • /
    • 1988
  • In the control of the robotic manipulators, the variable structure control method for the set point Regualation has an advantage of the insensitivity about parameter variations and disturbances. When the robotic manipulatores are controlled by a point-to-point scheme, no path constraint is considered. Thus, the variable structure control method will be effectively applied only if the trajectory of the robot hand is estimated precisely. In this paper, the joint trajectories in the joint space and the hand trajectory in the cartesian space are calculated by the variable structure control method, and an algorithm is suggested to elaborate the deviation error of the robot hand from a straight line path. The result of this study will become a base of the effective path planning about robotic manipulators with the variable structure control concept.

  • PDF

Fuzzy Auto-tuning PID Controller for Servo System (서보 시스템을 위한 퍼지 자동 동조 PID 제어기)

  • Oh, Hun;Yoon, Yang-Woong
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.1
    • /
    • pp.63-66
    • /
    • 1995
  • PID controller is being used in many servo control system. However, when a control system has variable load, it is difficult to guarantee the accurate control of the system. In the way of solving this problem, in this paper, a auto-tuning method of PID controller parameter using fuzzy rule in variable load is presented. The parameter of PID controller are decided by fuzzy rule according to load variation. The accurate control function of fuzzy auto-tuning is demonstrated by simulation.

  • PDF

EFFECTS OF PHASE-LAGS AND VARIABLE THERMAL CONDUCTIVITY IN A THERMOVISCOELASTIC SOLID WITH A CYLINDRICAL CAVITY

  • Zenkour, Ashraf M.
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.435-454
    • /
    • 2016
  • This paper investigates the effect of dual-phase-lags on a thermoviscoelastic orthotropic solid with a cylindrical cavity. The cylindrical cavity is subjected to a thermal shock varying heat and its material is taken to be of Kelvin-Voigt type. The phase-lag thermoelastic model, Lord and Shulman's model and the coupled thermoelasticity model are employed to study the thermomechanical coupling, thermal and mechanical relaxation (viscous) effects. Numerical solutions for temperature, displacement and thermal stresses are obtained by using the method of Laplace transforms. Numerical results are plotted to illustrate the effect phase-lags, viscoelasticity, and the variability thermal conductivity parameter on the studied fields. The variations of all field quantities in the context of dual-phase-lags and coupled thermoelasticity models follow similar trends while the Lord and Shulman's model may be different. The influence of viscosity parameter and variability of thermal conductivity is very pronounced on temperature and thermal stresses of the thermoviscoelastic solids.

Design of a Variable Structure Controller Using Nonlinear Fuzzy Sliding Surfaces (비선형 퍼지 슬라이딩면을 이용한 가변구조 제어기의 설계)

  • 이희진;손홍엽;김은태;조영환;박민용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.449-452
    • /
    • 1997
  • In this paper, we suggest a variable structure controller using the time-varying nonlinear sliding surface instead of the fixed sliding surface, which has been the robustness against parameter variations and extraneous disturbance during the reaching phase. As appling TS fuzzy algorithm to the regulation of the nonlinear sliding surface, the reaching time of the system trajectory is faster than the fixed method . This proposed scheme has better performance than the conventional method in reaching time parameter variation and extraneous disturbance. To demonstrate its performance, the proposed control algorithm is applied to a rotational inverted pendulum.

  • PDF

Optimal Parameter Selection of Power System Stabilizer using Genetic Algorithm (유전 알고리즘을 이용한 전력시스템 안정화 장치의 최적 파라미터 선정)

  • Chung, Hyeng-Hwan;Wang, Yong-Peel;Chung, Dong-Il;Chung, Mun-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.683-691
    • /
    • 1999
  • In this paper, it is suggested that the selection method of optimal parameter of power system stabilizer(PSS) with robustness in low frequency oscillation for power system using Real Variable Elitism Genetc Algorithm(RVEGA). The optimal parameters were selected in the case of power system stabilizer with one lead compensator, and two lead compensator. Also, the frequency responses characteristic of PSS, the system eigenvalues criterion and the dynamic characteristic were considered in the normal load and the heavy load, which proved usefulness of RVEGA compare with Yu's compensator design theory.

  • PDF