• Title/Summary/Keyword: variable parameter

Search Result 1,103, Processing Time 0.029 seconds

Size-dependent nonlinear pull-in instability of a bi-directional functionally graded microbeam

  • Rahim Vesal;Ahad Amiri
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.501-513
    • /
    • 2024
  • Two-directional functionally graded materials (2D-FGMs) show extraordinary physical properties which makes them ideal candidates for designing smart micro-switches. Pull-in instability is one of the most critical challenges in the design of electrostatically-actuated microswitches. The present research aims to bridge the gap in the static pull-in instability analysis of microswitches composed of 2D-FGM. Euler-Bernoulli beam theory with geometrical nonlinearity effect (i.e. von-Karman nonlinearity) in conjunction with the modified couple stress theory (MCST) are employed for mathematical formulation. The micro-switch is subjected to electrostatic actuation with fringing field effect and Casimir force. Hamilton's principle is utilized to derive the governing equations of the system and corresponding boundary conditions. Due to the extreme nonlinear coupling of the governing equations and boundary conditions as well as the existence of terms with variable coefficients, it was difficult to solve the obtained equations analytically. Therefore, differential quadrature method (DQM) is hired to discretize the obtained nonlinear coupled equations and non-classical boundary conditions. The result is a system of nonlinear coupled algebraic equations, which are solved via Newton-Raphson method. A parametric study is then implemented for clamped-clamped and cantilever switches to explore the static pull-in response of the system. The influences of the FG indexes in two directions, length scale parameter, and initial gap are discussed in detail.

Modelling of Drying Shrinkage for Different Environmental Conditions (환경인자를 고려한 건조수축의 예측모델 개발)

  • 한만엽
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.1
    • /
    • pp.111-120
    • /
    • 1996
  • Drying shrinkage is a very important properties of concrete, which is affected by environmental conditions. The environmental conditions are temperature, relative humidity, and wind speed, which is quite variable and its effct on drying shrinkage is quite complex, too. In this study, environmental effects on drying shrinkage wrer integrated into one variable-evaporation rate. In several different environmental conditions, evaporation rate was measured with Evaporometer and compared with PCA chart, and also compared with measured drying shirnkage to verify the possibility of being a single parameter. The results are summarized in a prediction chart and prediction equation for drying shrinkage.

The Effects of Design Parameter Uncertainty of the Shock Absorber on the Performance of Suspension System (충격 흡수기의 설계 파라미터 불확실성이 현가 장치 성능에 미치는 영향)

  • Lee, Choon-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.949-958
    • /
    • 2020
  • The functions of shock absorbers are to dampen body, suspend motions, dissipate impact energy, and control tire force variation. During the operation, hydraulic oil is passed between the chambers via a flow restrictions. Therefore the damping force characteristics of shock absorber is determined by the characteristics of orifices and flow restrictions. The uncertainty in design variable affects the performance of suspension system strongly. But, the researches about the influence of uncertainty in design variable such as a fluid restriction's property of shock absorber, on the suspension system performance was hardly ever proposed. In this paper, we used statistical method of Latin Hypercube sampling, and the effects of design variables uncertainty on the performance of suspension system was presented.

An Improved Integral Sliding Mode Controller for Regulation Control of Robot Manipulators (로봇 메니플레이터의 레귤레이션 제어를 위한 개선된 적분 슬라이딩 모드 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.103-113
    • /
    • 2018
  • In this paper, an improved integral variable structure regulation controller is designed by using a special integral sliding surface and a disturbance observer for the improved regulation control of highly nonlinear rigid robot manipulators with prescribed output performance. The sliding surface having the integral state with a special initial condition is employed in this paper to exactly predetermine the ideal sliding trajectory from a given initial condition to the desired reference without any reaching phase. And a continuous sliding mode input using the disturbance observer is also introduced in order to effectively follow the predetermined sliding trajectory within the prescribed accuracy without large computation burden. The performance of the prescribed tracking accuracy to the predetermined sliding trajectory is clearly investigated in detail through the two theorems, together with the closed loop stability. The design of the proposed regulation controller is separated into the performance design and robustness design in each independent link. The usefulness of the algorithm has been demonstrated through simulation studies on the regulation control of a two-link robot under parameter uncertainties and payload variations.

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

Modified Probabilistic Neural Network of Heterogeneous Probabilistic Density Functions for the Estimation of Concrete Strength

  • Kim, Doo-Kie;Kim, Hee-Joong;Chang, Sang-Kil;Chang, Seong-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.11-16
    • /
    • 2007
  • Recently, probabilistic neural network (PNN) has been proposed to predict the compressive strength of concrete for the known effect of improvement on PNN by the iteration method. However, an empirical method has been incorporated in the PNN technique to specify its smoothing parameter, which causes significant uncertainty in predicting the compressive strength of concrete. In this study, a modified probabilistic neural network (MPNN) approach is hence proposed. The global probability density function (PDF) of variables is reflected by summing the heterogeneous local PDFs which are automatically determined by the individual standard deviation of each variable. The proposed MPNN is applied to predict the compressive strength of concrete using actual test data from a concrete company. The estimated results of MPNN are compared with those of the conventional PNN. MPNN showed better results than the conventional PNN in predicting the compressive strength of concrete and provided promising results for the probabilistic approach to predict the concrete strength by using the individual standard deviation of a variable.

Acoustic emission behavior during fatigue crack propagation in 304 Stainless steel (피로균열진전에 따른 304 강의 음향방출 거동)

  • Oh, Kwang-Hwan;Jung, Chang-Kyu;Yang, Yoo-Chang;Han, Kyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.213-219
    • /
    • 2003
  • Acoustic emission behavior during fatigue crack growth test was investigated under various loading condition. To describe the acoustic emission activity, counts rate (d/dn) was related with SIFR (stress intensity factor range, K). Results indicated that SIFR could be divided into two parts according to its relationship with counts rate. For $K<25_{MPa\sqrt{m}}$, counts rate was increased as the SIFR increased. However, for values greater than $25_{MPa\sqrt{m}}$ , decreasing behavior was shown. This behavior of counts rate corresponding SIFR was keeping the same trend regardless of load range or crack length. Acoustic emission response to the single overload was sudden drop and slow recovery in counts rate like crack growth retardation. Under variable loading condition, counts rate of each loading block was same as that of constant amplitude loading. Overall experimental data was somewhat scattered since sensitive characteristics of acoustic emission method. However, these empirical relations indicated that counts rate was uniquely correlate with single parameter, SIFR.

  • PDF

Comparison of Semi-Implicit Integration Schemes for Rate-Dependent Plasticity (점소성 구성식의 적분에 미치는 선형화 방법의 영향)

  • Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1907-1916
    • /
    • 2003
  • During decades, there has been much progress in understanding of the inelastic behavior of the materials and numerous inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. To obtain the increment of state variable, its evolution laws are linearized by several approximation methods, such as general midpoint rule(GMR) or general trapezoidal rule(GTR). In this investigation, semi-implicit integration schemes using GTR and GMR were developed and implemented into ABAQUS by means of UMAT subroutine. The comparison of integration schemes was conducted on the simple tension case, and simple shear case and nonproportional loading case. The fully implicit integration(FI) was the most stable but amplified the truncation error when the nonlinearity of state variable is strong. The semi-implicit integration using GTR gave the most accurate results at tension and shear problem. The numerical solutions with refined time increment were always placed between results of GTR and those of FI. GTR integration with adjusting midpoint parameter can be recommended as the best integration method for viscoplastic equation considering nonlinear kinematic hardening.

Overtourism in Jeju Island: The Influencing Factors and Mediating Role of Quality of Life

  • KIM, Mincheol;CHOI, Kwang-Woong;CHANG, Mona;LEE, Chang-Hun
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.5
    • /
    • pp.145-154
    • /
    • 2020
  • The purpose of this study is to analyze how the problems caused by overtourism affect the quality of life of Jeju residents and their perceptions of the overtourism phenomenon by exploring related factors for future policy implications. In the research model, each independent factor related to tourists affects the quality of life of residents, and the mediation variable (QoL) ultimately agrees with overtourism. This study uses Partial Least Squares-Structural Equation Modeling (PLS-SEM), which is less influenced by the sample size. The research is based on 360 questionnaires. The test results showed that cultural factors affected the QoL statistically at 1% significance level, and economic factors were significant at 5%. The quality of life variable affects the agreement of overtourism (p-value 1% significance level). An indirect effect analysis on whether each independent factor affects the overtourism factor through the parameter of the QoL of the residents showed that the cultural factor at 5% level statistically affected it, and economic factors were significant at 10%. In conclusion, we recommend implementing both economic and cultural factors to reduce the negative perception of overtourism for the policy planning. Further research in multiple aspects should be continued to overcome the vulnerability of the Island destination tourism.

Variable Dynamic Threshold Method for Video Cut Detection (동영상 컷 검출을 위한 가변형 동적 임계값 기법)

  • 염성주;김우생
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4A
    • /
    • pp.356-363
    • /
    • 2002
  • Video scene segmentation is fundamental role for content based video analysis and many kinds of scene segmentation schemes have been proposed in previous researches. However, there is a problem, which is to find optimal threshold value according to various kinds of movies and its content because only fixed single threshold value usually used for cut detection. In this paper, we proposed the variable dynamic threshold method, which change the threshold value by a probability distribution of cut detection interval and information of frame feature differences and cut detection interval in previous cut detection is used to determine the next cut detection. For this, we present a cut detection algorithm and a parameter generation method to change the threshold value in runtime. We also show the proposed method, which can minimize fault alarm rate than the existing methods efficiently by experimental results.