• Title/Summary/Keyword: variable parameter

Search Result 1,103, Processing Time 0.027 seconds

Optimization and Verification of Parameters Used in Successive Zooming Genetic Algorithm (순차적 주밍 유전자 알고리즘 기법에 사용되는 파라미터의 최적화 및 검증)

  • KWON YOUNG-DOO;KWON HYUN-WOOK;KIM JAE-YONG;JIN SEUNG-BO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.29-35
    • /
    • 2004
  • A new approach, referred to as a successive zooming genetic algorithm (SZGA), is proposed for identifying a global solution, using continuous zooming factors for optimization problems. In order to improve the local fine-tuning of the GA, we introduced a new method whereby the search space is zoomed around the design variable with the best fitness per 100 generation, resulting in an improvement of the convergence. Furthermore, the reliability of the optimized solution is determined based on the theory of probability, and the parameter used for the successive zooming method is optimized. With parameter optimization, we can eliminate the time allocated for deciding parameters used in SZGA. To demonstrate the superiority of the proposed theory, we tested for the minimization of a multiple function, as well as simple functions. After testing, we applied the parameter optimization to a truss problem and wicket gate servomotor optimization. Then, the proposed algorithm identifies a more exact optimum value than the standard genetic algorithm.

Application of the Growth-Strain Method for Shape Optimal Design of a Flow System (유동 시스템의 형상 최적 설계를 위한 성장-변형률법의 적용)

  • Han, Seog-Young;Lee, Sang-Hwan;Kim, Jong-Pill;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.945-950
    • /
    • 2002
  • Shape optimization of a flow system is done to obtain the required effects, in the engineering fields. Most of these designs are accomplished by empirical or numerical analysis. In empirical analysis, it is difficult to obtain an optimal shape in the feasible design region. And, in numerical method, it usually needs much calculation expenses for shape optimization, because of design sensitivity analysis. In this study, we used the growth-strain method having only one distributed parameter such as a design variable. It optimizes a shape by making a distributed parameter such as dissipation energy uniform in a flow system, and then applied to two-flow systems. In order to overcome the stability occurred in numerical analysis performed by Azegami, the equation of volumic strain has been modified. Also, the shapes were compared with the known optimal shapes for the flow systems. Consequently, we confirm that the modified growth-strain method is very efficient and practical in shape optimization of the flow systems.

Parameter Identification of 3R-C Equivalent Circuit Model Based on Full Life Cycle Database

  • Che, Yanbo;Jia, Jingjing;Yang, Yuexin;Wang, Shaohui;He, Wei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1759-1768
    • /
    • 2018
  • The energy density, power density and ohm resistance of battery change significantly as results of battery aging, which lead to decrease in the accuracy of the equivalent model. A parameter identification method of the equivale6nt circuit model with 3 R-C branches based on the test database of battery life cycle is proposed in this paper. This database is built on the basis of experiments such as updating of available capacity, charging and discharging tests at different rates and relaxation characteristics tests. It can realize regular update and calibration of key parameters like SOH, so as to ensure the reliability of parameters identified. Taking SOH, SOC and T as independent variables, lookup table method is adopted to set initial value for the parameter matrix. Meanwhile, in order to ensure the validity of the model, the least square method based on variable forgetting factor is adopted for optimizing to complete the identification of equivalent model parameters. By comparing the simulation data with measured data for charging and discharging experiments of Li-ion battery, the effectiveness of the full life cycle database and the model are verified.

Vibration Analysis of Thick Plates with Concentrated Mass on Elastic Foundation (탄성지지된 집중질량을 갖는 변단면 후판의 진동해석)

  • Kim, Il-Jung;Oh, Soog-Kyoung;Lee, Yong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.609-618
    • /
    • 2006
  • This study is undertaken for the vibration analysis of tapered thick plate with concentrated mass on elastic foundation. The boundary condition of the plate is analyzed with the 4-sides simply supported and 4-fixed basis. This study find out the frequency following the change in size for each foundational variable on Pasternak foundation, one of the two-parameter elastic foundation parameter that considered the shear layer to the Winkler foundation parameter. The concentrated mass is applied with the consideration of mass of the entire plate, and the change of frequency is studies on each location with the consideration of reacting for the three locations for concentrated mass. And, in order to find out the change of frequency on the thickness of the plate, it considered tapered ratio that linearly changes depending on the length of the plate with the thickness of the plate in x-direction, and the tapered ratio has changes with 4 types ($\alpha$=0.25, 0, 5, 0.75, and 1.0). For the interpretation, the program using finite element method (F.E.M.) is used and the element coordination is used the 8-node serendipity element. Therefore, the purpose of this study is to find out the characteristics of plate vibration under the mechanica vibration or external vibration factor to facilitate as the basic data of the design to secure the stability.

Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM

  • Sadoughifar, Amirmahmoud;Farhatnia, Fatemeh;Izadinia, Mohsen;Talaeitaba, Sayed Behzad
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.307-318
    • /
    • 2019
  • This is the first attempt to consider the nonlinear bending analysis of porous functionally graded (FG) thick annular and circular nanoplates resting on Kerr foundation. The size effects are captured based on modified couple stress theory (MCST). The material properties of the porous FG nanostructure are assumed to vary smoothly through the thickness according to a power law distribution of the volume fraction of the constituent materials. The elastic medium is modeled by Kerr elastic foundation which consists of two spring layers and one shear layer. The governing equations are extracted based on Hamilton's principle and two variables refined plate theory. Utilizing generalized differential quadrature method (GDQM), the nonlinear static behavior of the nanostructure is obtained under different boundary conditions. The effects of various parameters such as material length scale parameter, boundary conditions, and geometrical parameters of the nanoplate, elastic medium constants, porosity and FG index are shown on the nonlinear deflection of the annular and circular nanoplates. The results indicate that with increasing the material length scale parameter, the nonlinear deflection is decreased. In addition, the dimensionless nonlinear deflection of the porous annular nanoplate is diminished with the increase of porosity parameter. It is hoped that the present work may provide a benchmark in the study of nonlinear static behavior of porous nanoplates.

The Influence of Sanctions and Protection Motivation on the Intention of Compliance with Information Security Policies: Based on Parameter of Subjective Norm (제재 및 보호동기와 정보보호정책 준수 의도에 관한 연구: 주관적 규범을 매개로)

  • Shin, Hyuk
    • Convergence Security Journal
    • /
    • v.19 no.2
    • /
    • pp.47-58
    • /
    • 2019
  • This study applied the Theory of Reasoned Action by Fishbein & Ajzen(1975) as the grounded theory and adopt sanctions of the General Deterrent Theory and protection motivation of the Protection Motivation Theory as the antecedents to discuss the theoretical factors and the cases of application in the field of information security. Then, it adopted subjective norm, a variable of the Theory of Reasoned Action, as a parameter to analyze the causality of sanctions, perceived vulnerability, response cost, and self-efficacy with the intention to follow the information security policies. As a result, all of the antecedents except for sanctions had causality with the intention and subjective norm proved its mediating effect as a parameter between the antecedents and the intention.

Damage evaluation of seismic response of structure through time-frequency analysis technique

  • Chen, Wen-Hui;Hseuh, Wen;Loh, Kenneth J.;Loh, Chin-Hsiung
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.107-127
    • /
    • 2022
  • Structural health monitoring (SHM) has been related to damage identification with either operational loads or other environmental loading playing a significant complimentary role in terms of structural safety. In this study, a non-parametric method of time frequency analysis on the measurement is used to address the time-frequency representation for modal parameter estimation and system damage identification of structure. The method employs the wavelet decomposition of dynamic data by using the modified complex Morlet wavelet with variable central frequency (MCMW+VCF). Through detail discussion on the selection of model parameter in wavelet analysis, the method is applied to study the dynamic response of both steel structure and reinforced concrete frame under white noise excitation as well as earthquake excitation from shaking table test. Application of the method to building earthquake response measurement is also examined. It is shown that by using the spectrogram generated from MCMW+VCF method, with suitable selected model parameter, one can clearly identify the time-varying modal frequency of the reinforced concrete structure under earthquake excitation. Discussions on the advantages and disadvantages of the method through field experiments are also presented.

Uncertainty quantification of once-through steam generator for nuclear steam supply system using latin hypercube sampling method

  • Lekang Chen ;Chuqi Chen ;Linna Wang ;Wenjie Zeng ;Zhifeng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2395-2406
    • /
    • 2023
  • To study the influence of parameter uncertainty in small pressurized water reactor (SPWR) once-through steam generator (OTSG), the nonlinear mathematical model of the SPWR is firstly established. Including the reactor core model, the OTSG model and the pressurizer model. Secondly, a control strategy that both the reactor core coolant average temperature and the secondary-side outlet pressure of the OTSG are constant is adopted. Then, the uncertainty quantification method is established based on Latin hypercube sampling and statistical method. On this basis, the quantitative platform for parameter uncertainty of the OTSG is developed. Finally, taking the uncertainty in primary-side flowrate of the OTSG as an example, the platform application work is carried out under the variable load in SPWR and step disturbance of secondary-side flowrate of the OTSG. The results show that the maximum uncertainty in the critical output parameters is acceptable for SPWR.

PI Control with the Smith Predictive Controller for a Variable Speed Refrigeration System

  • Hua, Li;Choi, Jeong-Pil;Jeong, Seok-Kwon;Yang, Joo-Ho;Kim, Dong-Gyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.3
    • /
    • pp.129-136
    • /
    • 2007
  • In this paper, we suggest PI control with the Smith predictive controller to improve transient response of a variable speed refrigeration system (VSRS). As the refrigeration system has long dead time inherently, it is difficult to get fast responses of super-heat and reference temperature. We incorporated the Smith predictive controller into PI to compensate the effect of the long dead time of the system. At first, we introduced the decoupling model of the system to control capacity and superheat simultaneously and independently. Next, we designed the predictive controller of the superheat based on PI control law. Finally, the control performance by the proposed method was investigated through some numerical simulations and experiments. The results of the simulations and experiments showed that the proposed PI control with the predictive controller could obtain acceptable transient behaviour for the system.

Control of Grid-Connected Photovoltaics Inverter Using Variable Hysteresis Band Current Controller (가변 히스테리시스 전류제어기를 이용한 연계형 태양광 인버터의 제어)

  • Choi, Youn-Ok;Cho, Geum-Bae;Baek, Hyung-Lae;Kim, Si-Kyung;Yu, Gwon-Jong;Song, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.525-527
    • /
    • 1996
  • Hysteresis current control is one of the simplest techniques used to control currents for high speed drive systems, because of its simplicity of implementation, fast current control response, and inherent peak current limiting capability. However the conventional fixed-band hysteresis control has a variable switching frequency throughout the fundamental period, and consequently the load current harmonics spreaded on the wide frequency range. In this paper, a simple, novel alterative approach is proposed for a variable-hysteresis band current controller which uses feedback techniques to achieve constant switching frequency with good dynamic response. The method is easily implemented in hardware, the resultant controller is easily tuned to a particular load, and has good immunity to variation in PV parameter and dc supply voltage.

  • PDF