This study was carried out for the purpose of selecting the most appropriate taper equation for the actual stands of Pinus thunbergii in the southern coastal region of Korea and then developing a stem volume table to provide basic data for rational management. To develop a volume table of Pinus thunbergii in this region of Korea, 59 sample trees with various diameter distributions were selected and stem analysis was performed. As a result of stem analysis, two trees with abnormal diameter and height growth as the age increased were rejected, and 57 trees were analyzed. To develop the taper equation, seven major variable exponential equations were used, including Kozak 1988, 1994, 2001, 2002, Bi 2000, Muhairwe 1999, and Sharma and Parton 2009. As a result of parameter estimation and statistical verification, the Kozak 1988 model showed the highest goodness of fit with Fit I (Fit Index), RMSE 1.5620, Bias 0.0031, and MAD 1.0784. The diameter of each 10cm stem ridge for the selected model was estimated, and a stem volume table was produced using the mensuration of division (end area formula) using the Smalian equation. As a result of two-sample T-test for volume table of this study and current yield table, the volume for this study was found to be significantly larger at all observation points (p < 0.001). Even for the same tree species, it is judged that differentiated volume tables are needed for each growth environment characteristic.
Journal of the Korean Society of Environmental Restoration Technology
/
v.27
no.4
/
pp.1-14
/
2024
Otters, designated as Class I endangered wildlife due to population declines resulting from urban development and stream burial, have seen increased appearances in freshwater environments since the nationwide ban on stream filling in 2020 and the implementation of urban stream restoration projects. There is a pressing need for scientific and strategic conservation measures for otters, an umbrella and vulnerable species in aquatic ecosystems. Therefore, this study predicts potential otter habitats using the species distribution model MaxEnt, focusing on Hwangguji Stream in Suwon, and proposes conservation strategies. Otter signs were surveyed over three years from 2019 to 2021 with citizen scientists, serving as presence data for the model. The model's outcomes were enhanced by analyzing 'river nature map' as a boundary. MaxEnt compared the performance of 60 combinations of feature classes and regularization multipliers to prevent model complexity and overfitting. Additionally, unmanned sensor cameras observed otter density for model validation, confirming correlations with the species distribution model results. The 'LQ-5.0' parameter combination showed the highest explanatory power with an AUC of 0.853. The model indicated that the 'adjacent land use' variable accounted for 31.5% of the explanation, with a preference for areas around cultivated lands. Otters were found to prefer shelter rates of 10-30% in riparian forests within 2 km of bridges. Higher otter densities observed by unmanned sensors correlated with increasing model values. Based on these results, the study suggests three conservation strategies: establishing stable buffer zones to enhance ecological connectivity, improving water quality against non-point source pollution, and raising public awareness. The study provides a scientific basis for potential otter habitat management, effective conservation through governance linking local governments, sustainable biodiversity goals, and civil organizations.
Bankruptcy involves considerable costs, so it can have significant effects on a country's economy. Thus, bankruptcy prediction is an important issue. Over the past several decades, many researchers have addressed topics associated with bankruptcy prediction. Early research on bankruptcy prediction employed conventional statistical methods such as univariate analysis, discriminant analysis, multiple regression, and logistic regression. Later on, many studies began utilizing artificial intelligence techniques such as inductive learning, neural networks, and case-based reasoning. Currently, ensemble models are being utilized to enhance the accuracy of bankruptcy prediction. Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving the generalization ability of the classifier. Base classifiers in the ensemble must be as accurate and diverse as possible in order to enhance the generalization ability of an ensemble model. Commonly used methods for constructing ensemble classifiers include bagging, boosting, and random subspace. The random subspace method selects a random feature subset for each classifier from the original feature space to diversify the base classifiers of an ensemble. Each ensemble member is trained by a randomly chosen feature subspace from the original feature set, and predictions from each ensemble member are combined by an aggregation method. The k-nearest neighbors (KNN) classifier is robust with respect to variations in the dataset but is very sensitive to changes in the feature space. For this reason, KNN is a good classifier for the random subspace method. The KNN random subspace ensemble model has been shown to be very effective for improving an individual KNN model. The k parameter of KNN base classifiers and selected feature subsets for base classifiers play an important role in determining the performance of the KNN ensemble model. However, few studies have focused on optimizing the k parameter and feature subsets of base classifiers in the ensemble. This study proposed a new ensemble method that improves upon the performance KNN ensemble model by optimizing both k parameters and feature subsets of base classifiers. A genetic algorithm was used to optimize the KNN ensemble model and improve the prediction accuracy of the ensemble model. The proposed model was applied to a bankruptcy prediction problem by using a real dataset from Korean companies. The research data included 1800 externally non-audited firms that filed for bankruptcy (900 cases) or non-bankruptcy (900 cases). Initially, the dataset consisted of 134 financial ratios. Prior to the experiments, 75 financial ratios were selected based on an independent sample t-test of each financial ratio as an input variable and bankruptcy or non-bankruptcy as an output variable. Of these, 24 financial ratios were selected by using a logistic regression backward feature selection method. The complete dataset was separated into two parts: training and validation. The training dataset was further divided into two portions: one for the training model and the other to avoid overfitting. The prediction accuracy against this dataset was used to determine the fitness value in order to avoid overfitting. The validation dataset was used to evaluate the effectiveness of the final model. A 10-fold cross-validation was implemented to compare the performances of the proposed model and other models. To evaluate the effectiveness of the proposed model, the classification accuracy of the proposed model was compared with that of other models. The Q-statistic values and average classification accuracies of base classifiers were investigated. The experimental results showed that the proposed model outperformed other models, such as the single model and random subspace ensemble model.
Yongmin Chang;Sung Wook Hong;Moon Jung Hwang;Il Soo Rhee;Duk-Sik Kang
Investigative Magnetic Resonance Imaging
/
v.5
no.1
/
pp.33-37
/
2001
Purpose : The water exchange rate between bulk water and bound water is an important parameter in deciding the efficiency of paramagnetic contrast agents. In this study, we evaluated the water exchange rates of various Gd-chelates using oxygen-17 NMR technique. Material and Methods : The samples (Gd-DTPA, Gd-DTPA-BMA, Gd-DOTA, Gd-EOB-DTPA) were prepared by mixing 5% $^{17}O-enriched$ water (Isotech, USA). The pH of the samples was adjusted to physiological value [pH=7.0] by buffer solution. The variable temperature $^{17}O-NMR$ measurements were performed using Bruker-600 (14.1 T, 81.3 MHz) spectrometer. Bruker VT-1000 temperature control units were used to stabilize the temperature. The $^{17}O$ spin-spin relaxation times (T2) were measured using Carr-Purcell-Meiboom-Gill (CPMG)I pulse sequence with 24 echo trains. The variable temperature T2 relaxation data were then fitted into Solomon-Bloembergen equations using least square fit algorithm to estimate the water exchange times. Results : From the measured $^{17}O-NMR$ relaxation rates, the determined water exchange rates at 300K are $0.42{\;}{\mu}s$ for Gd-DTPA, $1.99{\;}{\mu}s$ for Gd-DTPA-BMA, $0.27{\;}{\mu}s$ for Gd-DOTA, and $0.11{\;}{\mu}s$ for Gd-EOB-DTPA. The Gd-DTPA-BMA showed slowest exchange whereas Gd-EOB-DTPA had fastest water exchange rate. In addition, it was found that the water exchange rates (${\tau}_m$) of all samples had exponential temperature dependence with different decay constant. Conclusion : $^{17}O-NMR$ relaxation rate measurements, when combined with variable temperature technique, provide a solid tool for studying water exchange rate, which is very important in investigating the detailed mechanism of relaxation enhancement effect of the paramagnetic contrast agents.
KSCE Journal of Civil and Environmental Engineering Research
/
v.40
no.3
/
pp.273-283
/
2020
Because of climate change, the occurrence of localized and heavy rainfall is increasing. It is important to predict floods in urban areas that have suffered inundation in the past. For flood prediction, not only numerical analysis models but also machine learning-based models can be applied. The LSTM (Long Short-Term Memory) neural network used in this study is appropriate for sequence data, but it demands a lot of data. However, rainfall that causes flooding does not appear every year in a single urban basin, meaning it is difficult to collect enough data for deep learning. Therefore, in addition to the rainfall observed in the study area, the observed rainfall in another urban basin was applied in the predictive model. The LSTM neural network was used for predicting the total overflow, and the result of the SWMM (Storm Water Management Model) was applied as target data. The prediction of the inundation map was performed by using logistic regression; the independent variable was the total overflow and the dependent variable was the presence or absence of flooding in each grid. The dependent variable of logistic regression was collected through the simulation results of a two-dimensional flood model. The input data of the two-dimensional flood model were the overflow at each manhole calculated by the SWMM. According to the LSTM neural network parameters, the prediction results of total overflow were compared. Four predictive models were used in this study depending on the parameter of the LSTM. The average RMSE (Root Mean Square Error) for verification and testing was 1.4279 ㎥/s, 1.0079 ㎥/s for the four LSTM models. The minimum RMSE of the verification and testing was calculated as 1.1655 ㎥/s and 0.8797 ㎥/s. It was confirmed that the total overflow can be predicted similarly to the SWMM simulation results. The prediction of inundation extent was performed by linking the logistic regression with the results of the LSTM neural network, and the maximum area fitness was 97.33 % when more than 0.5 m depth was considered. The methodology presented in this study would be helpful in improving urban flood response based on deep learning methodology.
This study confirmed factors affecting smart factory technology acceptance through empirical analysis. It is a study on what factors have an important influence on the introduction of the smart factory, which is the core field of the 4th industry. I believe that there is academic and practical significance in the context of insufficient research on technology acceptance in the field of smart factories. This research was conducted based on the Unified Theory of Acceptance and Use of Technology (UTAUT), whose explanatory power has been proven in the study of the acceptance factors of information technology. In addition to the four independent variables of the UTAUT : Performance Expectancy, Effort Expectancy, Social Influence, and Facilitating Conditions, Government Assistance Expectancy, which is expected to be an important factor due to the characteristics of the smart factory, was added to the independent variable. And, in order to confirm the technical factors of smart factory technology acceptance, the Task Technology Fit(TTF) was added to empirically analyze the effect on Behavioral Intention. Trust is added as a parameter because the degree of trust in new technologies is expected to have a very important effect on the acceptance of technologies. Finally, empirical verification was conducted by adding Innovation Resistance to a research variable that plays a role as a moderator, based on previous studies that innovation by new information technology can inevitably cause refusal to users. For empirical analysis, an online questionnaire of random sampling method was conducted for incumbents of domestic small and medium-sized enterprises, and 309 copies of effective responses were used for empirical analysis. Amos 23.0 and Process macro 3.4 were used for statistical analysis. For accurate statistical analysis, the validity of Research Model and Measurement Variable were secured through confirmatory factor analysis. Accurate empirical analysis was conducted through appropriate statistical procedures and correct interpretation for causality verification, mediating effect verification, and moderating effect verification. Performance Expectancy, Social Influence, Government Assistance Expectancy, and Task Technology Fit had a positive (+) effect on smart factory technology acceptance. The magnitude of influence was found in the order of Government Assistance Expectancy(β=.487) > Task Technology Fit(β=.218) > Performance Expectancy(β=.205) > Social Influence(β=.204). Both the Task Characteristics and the Technology Characteristics were confirmed to have a positive (+) effect on Task Technology Fit. It was found that Task Characteristics(β=.559) had a greater effect on Task Technology Fit than Technology Characteristics(β=.328). In the mediating effect verification on Trust, a statistically significant mediating role of Trust was not identified between each of the six independent variables and the intention to introduce a smart factory. Through the verification of the moderating effect of Innovation Resistance, it was found that Innovation Resistance plays a positive (+) moderating role between Government Assistance Expectancy, and technology acceptance intention. In other words, the greater the Innovation Resistance, the greater the influence of the Government Assistance Expectancy on the intention to adopt the smart factory than the case where there is less Innovation Resistance. Based on this, academic and practical implications were presented.
Kim, Young-Il;Ryoo, In-Tae;Shim, Cheul;Lee, Sang-Bae
The Journal of Korean Institute of Communications and Information Sciences
/
v.18
no.12
/
pp.1870-1883
/
1993
In this paper, in order to build up the User Network Interface based on ATM, a study on traffic control techniques which should be performed by main function groups-B 75,5 NT2, LEX-is discussed. The structure of B-NT2 which is the most important function group In the User Network Interface is defined in quite a simple manner in addition, the functional blocks of LEX are defined in a similar manner as those of B NT2. It is possible to distribute total traffic control functions by using the similarities between B-NT2 and LEX and by allocating virtual path identifiers fixedly according to the characteristics of the traffics. For the traffic control techniques of ATM, relations among Connection Admtsslon Control, Usage Parameter Control and Bandwidth Allocation Control are defined and Multi Rule Base structure to realize optimal control functions according to the characteristics of the source traffics is proposed. And the Real-time Variable Window algorithmsimply designed to be suitable for the Multi Rule Base architecture is also proposed. The performances of the proposed algorithm are analyzed through the computer simulation by generating on-off source traffic in a virtual system that has the form of the proposed hardware. The analyzed results show that the distributed control is possible and that the implementation of the proposed architecture and algorithm is possible.
Journal of the Earthquake Engineering Society of Korea
/
v.9
no.5
s.45
/
pp.41-52
/
2005
Using the variable control gain scheme on the basis of fuzzy-based decision-making process, Fuzzy supervisory control (FSC) technique exhibits better control performance than linear control technique with one static control gain. This paper demonstrates the effectiveness of the FSC technique by evaluating the robust performance of the FSC technique under the presence of uncertainties in the models and the excitations. Robust performance of the FSC system is compared with that of optimally designed LQG control system for the benchmark cable-stayed bridge presented by Dyke et al. Parameter studies on the robust performance evaluation are carried out by varying the stiffness of the bridge model as well as the magnitudes of several earthquakes with different frequency contents. From the comparative study of two control systems, FSC system shows the enhanced control performance against various magnitudes of several earthquakes while maintaining lower level of power required for controlling the bridge response. Especially, FSC system clearly guarantees the improved robust performance of the control system with stable reduction effects on the seismic responses and slight increases in total power and stroke for the control system, while LQG control system exhibits poor robust performance.
Differently from fly ash, the bottom ash produced from thermoelectric power plant has been treated as an industrial waste matter, and almost reclaimed a tract from the sea. If this waste material is applicable to foam concrete as an aggregate owing to its light-weight, however, it may be worthy of environmental preservation by recycling of waste material as well as reducing self-weight of high-rising structure and horizontal forces and deformations of retaining wall subject to soil pressure. This study has an objective of evaluating the effects of application of bottom ash on the mechanical properties of foam concrete. Thus, the ratio of bottom ash to cement was selected as a variable for experiment and the effect was measured in terms of unit weight of concrete, air content, water-cement ratio and compressive strength. It can be observed from experiments that the application ratios have different effects on the material parameters considered in this experiment, thus major relationships between application ratio and each material parameter were finally introduced. The result of this study can be applied to decide a mix design proportion of foam concrete while bottom ash is used as an aggregate of the concrete.
The Journal of Korean Institute of Communications and Information Sciences
/
v.32
no.9C
/
pp.849-860
/
2007
Because the H.264/AVC standard adopts the variable length coding algorithm, the rate of encoded video bitstream fluctuates a lot as time flows, though its compression efficiency is superior to that of existing standards. When a video is transmitted in real-time over networks with fixed low-bandwidth, it is necessary to control the bit rate which is generated from encoder. Many existing rate control algorithms have been adopting the quadratic rate-distortion model which determines the target bits for each frame. We propose a new rate control algorithm for H.264/AVC video transmission over networks with fixed bandwidth. The proposed algorithm predicts quantization parameter adaptively to reduce video distortion using the quadratic rate-distortion model, which uses the target bit rate and the mean absolute difference for current frame considering pixel difference between macroblocks in the previous and the current frame. On video samples with high motion and scene change cases, experimental results show that (1) the proposed algorithm adapts the encoded bitstream to limited channel capacity, while existing algorithms abruptly excess the limit bit rate; (2) the proposed algorithm improves picture quality with $0.4{\sim}0.9dB$ in average.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.