• Title/Summary/Keyword: var compensator

Search Result 139, Processing Time 0.025 seconds

BESS Modeling and Application to Voltage Compensation of Electric Railway System (BESS 모델링 및 전기철도 급전계통에의 전압보상 적용)

  • Yoo, Hyeong-Jun;Son, Ho-Ik;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.417-423
    • /
    • 2013
  • The load of electric railroad can generate voltage fluctuation in the electric railway system because of high speed of the electric railroad and frequent movement and stop. This voltage fluctuation of electric railway system can cause not only voltage imbalance but also harmonic in the utility grid. Therefore the electric railroad system is in need of the reactive power compensation, such as static synchronous compensator (STATCOM) and static var compensator (SVC). Especially, the battery energy storage system (BESS) can control the real and reactive power at the same time. In this paper, the electric railway system using BESS has been modeled to show its voltage compensation effect using Matlab/Simulink.

A Study on the Hybrid Reactive Power Compensator (하이브리드 무효전력 보상장치에 관한 연구)

  • Song, Kwang-Suk;Park, Seong-Mi;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.374-375
    • /
    • 2018
  • 신재생에너지의 보급 확산과 전력수요의 증가에 따라 전력계통이 분산화되는 추세이며 이에 따라 배전계통의 안정화를 위한 전력계통 안정화 장치(Power System Stabilizer)로 그 사용이 확대되고 있는 추세이다. 따라서 대표적인 전력계통 안정화 장치인 정지형 무효전력보상장치(SVC: Staic Var Compensator)에 대한 다양한 토폴로지로 개발되고 있다. 또한 기술의 트랜드는 SVC에서 Statcom 기술 개발로 이어지고 있다. 최근 Statcom의 변환손실 및 경제적 단점을 극복하기 위해 Statcom과 SVC를 병렬로 사용하는 Hybrid 방식에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 SVC 기능에서 TCC(Thyristor Controlled Capacitor)방식에서 문제가 되는 돌입전류 제한을 위한 새로운 Soft-Step Switching 방식을 제안한다. 또한 Statcom의 용량을 줄이기 위해 SVC용 무효전력 보상 리액터 및 콘덴서 군을 설계하였다.

  • PDF

Interaction and Transient Analysis to FACTS Devices in Seoul Area (수도권 FACTS 상호영향 및 과도특성 분석)

  • Yoon, Jong-Su;Kim, Jae-Han;Lee, Seong-Doo;Choi, Jang-Hum;Seo, Bo-Hyeok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.1929-1935
    • /
    • 2010
  • This paper describes the operation effect of FACTS devices in the Korean power system. At the year of 2010, three FACTS devices is under commercial operation in the Seoul area. Among them, 345kV ${\pm}100MVA$ STATCOM at Mi-Geum substation and 345kV ${\pm}200MVA$ SVC at Dong-Seoul substation are very close at their electrical and geographical distance. Therefore, the additional analysis including interaction and mutual transient is necessary. Therefore, a detailed EMTDC/PSCAD simulation model was developed and steady-state/transient analysis was implemented.

A study on the DC Capacitor Voltage control of 5 Level Inverter for Static Var Compensator (자려식 SVC용 5레벨 인버터의 직류측 콘덴서 전압제어에 관한 연구)

  • 김종윤;오진석;공관식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.223-228
    • /
    • 1999
  • A five-level VSI(Voltage Source Inverter) is introduced as a SVC(Static Vu Compensator) like a large scale power source. The problems in using SVC are that the power device can easily be destroyed by voltage unbalance and accurate reactive power control is difficult because of voltage variation. A asymmetrical PAM(Pulse Amplitude Modulation) switching pattern is proposed to solve this problem and analyze both fundamental component and harmonic current in the system. Through experimental results of 3.5 kVA experimental test system, It is confirmed that DC capacitor voltage can be controlled by asymmetrical PAM switching pattern control.

  • PDF

Analysis of Voltage Regulation by DSTATCOM - Using the EMTDC Program

  • Jeon Young-Soo;Kwak No-Hong;Choo Jin-Boo
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.329-334
    • /
    • 2005
  • The DSTATCOM(Distribution Static Synchronous Compensator) is one of the Custom Power Devices that can regulate voltage. The DSTATCOM operates as a shunt connected static var compensator whose capacitive or inductive output current can be controlled independent of the system voltage. The magnitude of the compensated voltage is limited by characteristics of the system and the load. Compensation capability of the DSTATCOM which can inject 1 MVAR reactive power was simulated by EMTDC under several conditions. This paper analyzes the effect of the DSTATCOM's compensation considering the length and kind of distribution line, the power factor and magnitude of the load, and the duration and magnitude of the voltage variation.

A Study on the Application of the DVR in AC Electric Traction System (전기철도계통에 순간전압강하 보상장치 적용에 관한 연구)

  • 최준호;김태수;김재철;문승일;남해곤;정일엽;박성우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.95-104
    • /
    • 2003
  • The electric traction systems are quite differ from general power systems which is single-phase and heavy load. Therefore, there are inevitably power quality problems such as steady state or transient voltage drop, voltage imbalance and harmonic distortion. Among these problems, since steady-state volatge drop is the one of most important factor in electric power quality, many researches about on the compensation of volatge drop by using SVC(Static Var Compensator) and/or STACOM(Static Compensator) have been studied and proposed Also, it is expected that transient voltage drop(voltage sag) could affect the control and safety of high speed traction load. In this paper, voltage sag compensation of AT(Auto Transformer) feeding system are studied The detailed transient models of utility source, scott transformer, AT, and traction load are estabilished. The application of DVR(Dynamic Voltage Restorer) in electric traction system is proposed to compensate the voltage sag of traction network which is occured by the fault of utility source. It can be shown that application of the DVR in electric traction system is very useful to compensate the volatge sag from the result of related simulation works.

Dynamic Interaction Research among Static Var Compensators (정지형 무효 전력 보상기 간의 상호 간섭 연구)

  • Kim, Hee-Jin;Hur, Kyeon;Chang, Byung-Hoon;Ha, Yong-Gu
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.455-456
    • /
    • 2011
  • 전력의 흐름을 제어하기 위하여 유연 송전 시스템(Flexible AC Transmission System, FACTS)이 전력 계통에 다수 설치되었고, 앞으로도 설치되는 FACTS 기기의 수가 늘어날 예정이다. 특히, 전력수요가 많은 수도권에는 안정도와 안전도를 확보하기 위해 FACTS 중 하나인 정지형 무효 전력 보상기(Static Var Compensator, SVC)의 설치가 필요하다. 하지만 SVC가 수도권에 다수 설치되면 SVC 기기 간에 상호 간섭 가능성이 있다. 따라서 본 논문에서는 SVC 기기 간의 상호간섭 가능성을 제시하고 Kundur 모델의 PSS/e 시뮬레이션을 통해 SVC 기기 간의 상호 간섭이 발생할 수 있음을 확인하고자 한다.

  • PDF

Dynamic Model Study for the Analysis of the STATCOM Characteristics (STATCOM의 특성해석을 위한 동적모델 고찰)

  • Kim, S.H.;Won, D.J.;Han, H.G.;Lee, S.K.;Moon, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1039-1041
    • /
    • 1999
  • Recently Advanced Static Var Compensators(ASVC) or STATic Synchronous COMpesator(STATCOM) has been considered as a next generation reactive power controller. [2] STATCOM is a voltage source inverter(VSI) based static VAr compensator with only small capacitors on the do side. The main function of the STATCOM is to keep the bus voltage magnitude at the desired value. [1] This paper compares the PAM STATCOM with PWM STATCOM. The characteristics and the control method of each model is analyzed. And the simulation of STATCOMs based on the above two methods was presented.

  • PDF

The Dynamic Characteristics Analysis of the STATCOM According to the Realization of the STATCOM Output Voltage (STATCOM의 출력전압 구현방식에 따른 동특성 해석)

  • Kim, Seon-Ho;Won, Dong-Jun;Han, Hak-Geun;Lee, Song-Geun;Mun, Seung-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.323-331
    • /
    • 2000
  • Recently Advanced Static Var Compensators(ASVC) or STATic Synchronous COMpesator(STATCOM) has been considered as a next generation reactive power controller. The STATCOM is a voltage source inverter(VSI) based on the static VAr compensator with only small capacitors on the dc side. The main function of the STATCOM is to keep the bus voltage magnitude at the desired value. This paper compared the PAM STATCOM with the PWM STATCOM. The characteristics and the control method of each model is analyzed. And the simulation of STATCOMs based on the above two methods is presented.

  • PDF

A study on the Reactive Power Compensation using Instantaneous Power for Self Commutated Static Var Compensator (순시전력을 이용한 자려식 SVC의 무효전력보상에 관한 연구)

  • Eum, Sang-O;Kim, Jong-Yun;Jeon, Nae-Suck;Park, Chan-Kun;Lee, Sung-Geun;Kim, Yoon-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1206-1208
    • /
    • 2000
  • The Static var compensators(SVC) are intensively studied to realize high performance power equipment for electric power systems. Rapid and continuous reactive compensation by the SVC contributes to voltage stabilization, power oscillation damping, overvoltage suppression, minimization of transmission losses and so on. In this paper, instantaneous power vector theory which can expresses the instantaneous apparent power vector is proposed to control reactive power. The validity of the proposed method is confirmed by simulation studies.

  • PDF