• Title/Summary/Keyword: var compensator

Search Result 139, Processing Time 0.032 seconds

MODELING OF A STATIC VAR COMPENSATOR USING EMTP (EMTP를 이용한 무효전력 보상용 SVC 모델링)

  • Lee, Byung-Chul;Lee, You-Jin;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2281-2282
    • /
    • 2008
  • 전력계통에서 전압을 안정시키고 계통의 안정도를 증진시키기 위해 송전시 발생하는 무효전력을 보상하는 방법으로 SVC(Static Var Compensator, 정지형 무효전력보상기)를 사용한다. SVC를 TCR(Thyristor Controlled Reactor)과 FC(Fixed Capacitor)필터, 그리고 스너버(Snubber)회로를 사용하여 모델링하고 이 모델을 EMTP를 이용하여 시뮬레이션함으로써 그 결과를 통해 SVC가 전력계통의 무효전력을 보상함을 알아본다.

  • PDF

Modeling of Static VAR Compensator for Voltage Control Using EMTP (EMTP를 이용한 전압보상용 SVC모델링)

  • Park, Dae-Yun;Lee, You-Jin;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2283-2284
    • /
    • 2008
  • TCR(Thyristor Controlled Reactor, 싸이리스터 제어 리액터)를 사용한 SVC(Static VAR Compensator, 정지형 무효전력 보상장치)의 모델링을 제시한다. 이 모델링을 전력계통의 전압 제어에 적용하며 EMTP(Electro-Magnetic Transient Program, 전자기적 과도현상 해석 프로그램)를 통하여 시뮬레이션의 결과를 도출하고 EMTP를 통한 모델링을 확인한다.

  • PDF

Static Var Compensator Using a Three Phase PWM Watkins-Johnson AC-AC Converter (3상 PWM Watkins-Johnson AC-AC 컨버터를 이용한 무효전력보상기)

  • Choi, Nam-Sup;Li, Yulong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.960-961
    • /
    • 2006
  • In this paper, a static var compensator using three phase PWM Watkins-Johnson AC-AC converter is presented. The PWM Watkins-Johnson AC-AC converter is modelled by using circuit DQ transformation whereby the basic DC characteristics equation is analytically obtained. Finally, the PSIM simulation shows the validity of the modelling and analysis.

  • PDF

Large Scale Var Compensator Using Multilevel Inverter (멀티레벨 인버터를 사용한 대용량 무효전력 보상기)

  • Choi, Nam-S.;Liu, Hyo-L.;Cho, Gyu-H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.767-769
    • /
    • 1993
  • A multilevel PWM voltage source inverter, especially five-level one, is introduced to obtain a static var compensator(SVC) as a large scale power, source. In this paper, the three phase SVC is modeled using circuit DQ transformation and completely analyzed. Finally, through the experimental results from 5-kVA SVC, the validity of the analyses and the feasibility of the SVC system are shown for high power applications.

  • PDF

Evaluation of Effects on Power System by Installing the Static Var Compensator (SVC 설치 운전에 따른 계통의 영향성 평가)

  • Yoon, Jong-Su;Kim, Yong-Hak;Kim, Soo-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1187-1193
    • /
    • 2010
  • This paper provides the methods for enhancing the stability with normal or emergency operating conditions in real power systems and copes with the unbalance of demand of reactive power due to the loss of facility, such as 765kV transmission line. In this paper, we focused on the maximum allowable transmission power(hereafter, MAXTP) in the metropolitan area. In order to increase the MAXTP, the application of reactive power compensators, SVC, and Shunt compensator and reactor, is analyzed as an enhancing method of stability and MAXTP. Particularly, the f-V analysis was performed for the postulated contingency, in order to evaluate the effects on SVC. Conclusively, the stability of power systems could be enhanced and the MAXTP is increased effectively with Dongseoul SVC which has the capacity 200MVAr.

Variable-Speed Wind Turbine Coupled Three-Phase Self-Excited Induction Generator Voltage Regulation Scheme with Static VAR Compensator Controlled by Pl Controller

  • Ahmed Tarek;Nishida Katsumi;Sato Shinji;Nagai Shinichro;Hiraki Eiji;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.532-535
    • /
    • 2003
  • In this paper, a Pl controlled feedback closed-loop voltage regulation scheme of the three-phase squirrel cage rotor self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) such as a wind turbine is designed on the basis of the static VAR compensator (SVC) and discussed in experiment fer the promising stand-alone power independent conditioner. The simulation and experimental results of the three-phase SEIG with the simple SVC controller for its stabilized voltage regulation prove the practical effectiveness of the additional SVC control loop scheme including the PI controller with fast response characteristics and steady-sate performance improvement.

  • PDF

Static VAR Compensator-Based Voltage Regulation for Variable-Speed Prime Mover Coupled Single- Phase Self-Excited Induction Generator

  • Ahmed, Tarek;Noro, Osamu;Sato, Shinji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.185-196
    • /
    • 2003
  • In this paper, the single-phase static VAR compensator (SVC) is applied to regulate and stabilize the generated terminal voltage of the single-phase self-excited induction generator (single-phase SEIG) driven by a variable-speed prime mover (VSPM) under the conditions of the independent inductive load variations and the prime mover speed changes The conventional fixed gain PI controller-based feedback control scheme is employed to adjust the equivalent capacitance of the single-phase SVC composed of the fixed excitation capacitor FC in parallel with the thyristor switched capacitor TSC and the thyristor controlled reactor TCR The feedback closed-loop terminal voltage responses in the single-phase SEIG coupled by a VSPM with different inductive passive load disturbances using the single-phase SVC with the PI controller are considered and discussed herem. A VSPM coupled the single-phase SEIG prototype setup is established. Its experimental results are illustrated as compared with its simulation ones and give good agreements with the digital simulation results for the single-phase SEIG driven by a VSPM, which is based on the SVC voltage regulation feedback control scheme.

Series Line Compensation through Voltage Source Inverter (전압원 인버터에 의한 선로의 직렬보상)

  • 한병문;한경희;신익상;강중구
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.299-302
    • /
    • 1997
  • This paper describes a dynamic var compensator to compensate the line reactance for power transmission and distribution system. The compensator consists of a voltage source inverter with dc capacitor, coupling transformers, and control circuit. The operation of compensator was verified by computer simulations with EMPT and experimental works with a scaled hardware model. The advantage of the proposed system is rapid and continuous regulation of the reactive power.

  • PDF

The Comparison of Operating Characteristics of SVC and STATCOM for Compensating the Reactive Power in the Jeju Power System (제주계통의 무효전력보상을 위한 SVC와 STATCOM의 운전특성 비교)

  • LEE, SEUNGMIN;Kim, Eel-Hwan;Kim, Ho Min;Oh, Sung-Bo;LEE, DOHEON
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.49-56
    • /
    • 2015
  • This paper presents a comparative operating characteristics of static var compensator(SVC) and static synchronous compensator(STATCOM) for compensating the reactive power in the Jeju power system. There are two kinds of reactive power compensating systems, which are active and passive system in the applications of the line commutated converter type high voltage direct current (LCC-HVDC). In the Jeju power system, two STATCOMs as active compensating system have been operating. Even though STATCOM has good performance compared with SVC, economical efficiency of former system is not good to the latter system. So, it is necessary to examine the performance and economical efficiency depend on the intention before appling the system. To compare the operating characteristics of two systems in the Jeju power system, simulations have been carried out for case studies that both of the HVDC system have transient state by using PSCAD/EMTDC program.

Design of Advanced Static Var Compensator(ASVC) for Distribution Line (배전선로 적용을 위한 새로운 무효전력보상치(ASVC)의 설계)

  • Min, Wan-Ki;Lee, Sang-Hun;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2010-2012
    • /
    • 1997
  • A cascade multilevel voltage source inverter is introduced to apply the advanced static var compensator(ASVC) for large scale power application. This cascade M-level inverter consists of (M-1)/2 single-phase full bridges. This inverter is suitable to the flexible ac transmission systems(FACTS) including SVC, series compensation and phase shifting. It can solve the problems of conventional transformer -based multipulse inverters and multilevel diode-clamped inverters. From the simulation results, the validity of ASVC with cascade multilevel inverter is shown for high power application.

  • PDF