• Title/Summary/Keyword: vapor-deposition

Search Result 2,855, Processing Time 0.027 seconds

Effects of Organic Passivation Layers by Vapor Deposition Polymerization(VDP) for Organic Thin-Film Transistors(OTFTs) (Vapor Deposition Polymerization(VDP)을 이용한 페시베이션이 유기박막트렌지스터에 주는 영향)

  • Park, Il-Houng;Hyung, Gun-Woo;Choi, Hak-Bum;Kim, Jae-Hyeuk;Kim, Woo-Young;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.114-115
    • /
    • 2007
  • In this paper, it was demonstrated that organic thin-film transistors (OTFTs) were fabricated with the organic passivation layer by vapor deposition polymerization (VDP) processing, In order to form polymeric film as an passivation layer, VDP process was also introduced instead of spin-coating process, where polymeric film was co-deposited by high-vacuum thermal evaporation from 6FDA and ODA followed by curing, Field effect mobility, threshold voltage, and on-off current ratio with 450-nm-thick organic passivation layer were about $0.21\;cm^2/Vs$, IV, and $1\;{\times}\;10^5$, respectively.

  • PDF

Various Shape of Carbon Layer on Ga2O3 Thin Film by Controlling Methane Fraction in Radio Frequency Plasma Chemical Vapor Deposition (Ga2O3박막 상에서의 RF 플라즈마 화학기상증착법의 메테인 분율 조절에 의한 탄소층의 다양한 형상 제어 연구)

  • Seo, Ji-Yeon;Shin, Yun-Ji;Jeong, Seong-Min;Kim, Tae-Gyu;Bae, Si-Young
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, we controlled the shape of a carbon layer on gallium oxide templates. Gallium oxide layers were deposited on sapphire substrates using mist chemical vapor deposition. Subsequently, carbon layers were formed using radio frequency plasma chemical vapor deposition. Various shapes of carbon structures appeared according to the fraction of methane gas, used as a precursor. As methane gas concentration was adjusted from 1 to 100%, The shapes of carbon structures varied to diamonds, nanowalls, and spheres. The growth of carbon isotope structures on Ga2O3 templates will give rise to improving the electrical and thermal properties in the next-generation electronic applications.

Formation of CVD-Cu Thin Films on Polyimide Substrate (Polyimide 기판을 이용한 CVD-Cu 박막 형성기술)

  • 조남인;임종설;설용태
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.37-42
    • /
    • 2000
  • Copper thin films have been prepared by a metal organic chemical vapor deposition (MOCVD) technology on polyimide and TiN substrates. The Cu-MOCVD technology has advantages of the high deposition rate and the good step coverage compared with the conventional physical vapor deposition (PVD) technology in several industrial applications. The Cu films have been deposited with varying the experimental conditions of substrate temperatures and copper source vapor pressures. The films were annealed in a vacuum condition after the deposition, and the annealing effect on the electrical properties of the films was measured. The crystallinity and the microstructures of the films were observed by scanning electron microscopy (SEM), and the electrical resistivity was measured by 4-point probe. In the case of the Cu deposition on TiN substrate, the best electrical property of the films was measured for the samples prepared at 18$0^{\circ}C$. Very high deposition rate of the Cu film up to 250 nm/min was obtained on the polyimide substrate when the mixture of liquid and vapour precursor was used.

  • PDF

p-type CuI Thin-Film Transistors through Chemical Vapor Deposition Process (Chemical Vapor Deposition 공정으로 제작한 CuI p-type 박막 트랜지스터)

  • Seungmin Lee;Seong Cheol Jang;Ji-Min Park;Soon-Gil Yoon;Hyun-Suk Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.491-496
    • /
    • 2023
  • As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 ℃ The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.

Characterization of Chemical Vapor Condensation Reactor for Parylene-N Thin Film Deposition

  • Lee, Jong-Seung;Yeo, Seok-Ki;Park, Chin-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.897-900
    • /
    • 2003
  • Chemical vapor condensation (CVC) reactor was investigated for the deposition of Parylene-N thin films as the passivation layer for organic light emitting diodes (OLEDs). Several gas inlet manifold designs were tested to improve the deposition rate and its uniformity, and it was found that proper inlet design is crucial to get the desired film properties. Process characterization was also performed with the modified inlets to optimize the process variables.

  • PDF

Crystal Structure Ana1ysis of the Diamond Films Grown by MPCVD (MPCVD에 의한 다이아몬드 박막의 결정구조 해석)

  • 원종각;김종성;흥근조;권상직
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.391-394
    • /
    • 1999
  • The diamond thin films are deposited on silicon using MPCVD(Microwave Plasma Chemical Vapor Deposition) method at various deposition microwave power and time. Diamond is deposited with 100 sccm H$_2$ and 2 sccm CH$_4$ by MPCVD. The crystallinity of diamond thin films were increased with increase of microwave power. The growth rate of diamond thin films were increased with increase of time.

  • PDF

Chemical Vapor Deposition of Diamond Film from Methane-Hydrogen Gas in Microwave Plasma (마이크로웨이브 플라즈마에서 메탄-수소가스로부터 다이아몬드박막의 화학증착)

  • 이길용;제정호
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.331-340
    • /
    • 1989
  • In this study, it was tried to deposit diamond films from a mixture of CH4 and H2 by the microwave plasma chemical vapor deposition(MWCVD). The MWCVD process was designed and set up from the 2.45GHz microwave generator. And the diamond film was successfully deposited on silicon wafers from the mixture of methane and hydrogen. The microstructures of the deposited diamond films were studied by using the following deposition variables : (a) methane concentration(0.6-10%), (b) reaction pressure(10-100torr), and (c) the substrate temperature(450-76$0^{\circ}C$).

  • PDF

Preparation of Alumina Composite Membranes by Chemical Vapor Deposition (화학기상증착법을 이용한 알루미나 복합 분리막의 제조)

  • 안상욱;최두진;현상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.927-933
    • /
    • 1994
  • Alumina composite membranes were prepared by chemical vapor deposition (CVD) using aluminum-tri-isopropoxide as a precursor. Porous alumina supports were used in deposition, which were in disk shape with mean pore diameter of 0.1 ${\mu}{\textrm}{m}$ and prepared by slip-coasting process. film deposition morphology on porous support was simulated through depositing alumina film on polycrystalline silicon pattern, and its step coverage observed by SEM showed one deviated from uniform step coverage. N2 permeability through composite membranes and the pressure dependence decreased as the deposition time increased. Initially, the N2 permeability of the top layer was tend to decrease rapidly, and then the degree of decrease in N2 permeability was tend to diminish with deposition time. The N2 permeability increased with heat treatment temperature and the crack was generated in top layer at 100$0^{\circ}C$.

  • PDF

A study of unsteady heat and mass transfer in the modified chemical vapor deposition process (수정된 화학증착방법에서 비정상 열 및 물질전달 해석)

  • Park, Gyeong-Sun;Choe, Man-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.79-88
    • /
    • 1997
  • An analysis of unsteady heat and mass transfer in the Modified Chemical Vapor Deposition has been carried out including the effects of chemical reaction and variable properties. It was found that commonly used quasi-steady state assumption could be used to predict overall efficiency of deposition, however, the assumption would not provide detailed deposition profile. The present unsteady calculations of wall temperature profile and deposition profile have been compared with the existing experimental data and were in good agreement. The effects of variable torch speed were studied. Linearly varying torch speed case until time=120s resulted in much shorter tapered entry than the constant torch speed case.