• Title/Summary/Keyword: vapor-deposition

Search Result 2,855, Processing Time 0.027 seconds

A Study of The Photosensitive Characteristic and Fabrication of Polyimide Thin Film by Dry Processing (건식법을 이용한 폴리이미드 박막의 제조 및 광특성)

  • Lee, Boong-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.139-141
    • /
    • 2007
  • Thin films of polyimide (Pl) were fabricated by a vapor deposition polymerization method (VDPM) and studied for the photosensitive characteristic. Polyamic acid (PAA) thin films fabricated by vapor deposition polymerization (VDP) from 6FDA and 4-4' DDE were converted to PI thin films by thermal curing. From AFM and Ellipsometer experimental, the films thickness was decreased and the reflectance was increased as the curing temperature was increased. Those results implies that thin film is uniform. From UV-Vis spectra, PI thin films showed high absorbance in 225 $\sim$ 260 [nm] region.

Physical Properties of Diamond-like Carbon Thin Films Prepared by a Microwave Plasma-Enhanced Chemical Vapor Deposition (마이크로웨이브 화학기상증착법으로 성장된 다이아몬드상 카본박막의 물리적인 특성연구)

  • Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.791-794
    • /
    • 2003
  • DLC thin films were prepared by microwave plasma-enhanced chemical vapor deposition method on silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gas mixture. The negative DC bias ($-450V{\sim}-550V$) was applied to enhance the adhesion between the film and the substrate. The films were characterized by Raman spectrometer. The surface morphology was observed by an atomic force microscope (AFM). And also, the friction coefficients were investigated by AFM in friction force microscope (FFM) mode, which were compared with the pin-on-disc (POD) measurement.

  • PDF

Physical Properties of Diamond-like Carbon Thin Films Prepared by a Microwave Plasma-Enhanced Chemical Vapor Deposition (마이크로웨이브 화학기상증착법으로 성장된 다이아몬드상 카본박막의 물리적인 특성연구)

  • Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.842-845
    • /
    • 2003
  • DLC thin films were prepared by microwave plasma-enhanced chemical vapor deposition method on silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gas mixture. The negative DC bias ($-450V{\sim}-550V$) was applied to enhance the adhesion between the film and the substrate. The films were characterized by Raman spectrometer. The surface morphology was observed by an atomic force microscope (AFM). And also, the friction coefficients were investigated by AFM in friction force microscope (FFM) mode, which were compared with the pin-on-disc (POD) measurement.

  • PDF

Overlook of current chemical vapor deposition-grown large single-crystal graphene domains

  • Park, Kyung Tae;Kim, Taehoon;Park, Chong Rae
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.151-161
    • /
    • 2014
  • Exceptional progress has been made with chemical vapor deposition (CVD) of graphene in the past few years. Not only has good monolayer growth of graphene been achieved, but large-area synthesis of graphene sheets has been successful too. However, the polycrystalline nature of CVD graphene is hampering further progress as graphene property degrades due to presence of grain boundaries. This review will cover factors that affect nucleation of graphene and how other scientists sought to obtain large graphene domains. In addition, the limitation of the current research trend will be touched upon as well.

Graphene Synthesis on Pt Substrate using a Chemical Vapor Deposition Method (열화학기상증착법에 의한 백금 기판 위의 그래핀 합성)

  • Lee, Byeong-Joo;Jeong, Goo-Hwan
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.89-94
    • /
    • 2015
  • Graphene is a carbon-based two dimensional honeycomb lattice with monoatomic thickness and has attracted much attention due to its superior mechanical, electronic, and physical properties. Here, we present a synthesis of high quality graphene on Pt substrate using a chemical vapor deposition (CVD). We optimized synthesis condition with various parameters such as synthesis temperature, time, and cooling rate. Based on the results, we concluded that graphene synthesis is driven by mainly carbon adsorption on surface rather than precipitation of carbon which is dominant in other metal substrate. In addition, Pt substrate can be repeatedly used several times with high quality graphene.

  • PDF

Chemical Vapor Deposition Using Ethylene Gas toward Low Temperature Growth of Single-Walled Carbon Nanotubes

  • Jo, Sung-Il;Jeong, Goo-Hwan
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.262-267
    • /
    • 2015
  • We demonstrate the growth of single-walled carbon nanotubes (SWNTs) using ethylene-based chemical vapor deposition (CVD) and ferritin-induced catalytic particles toward growth temperature reduction. We first optimized the gas composition of $H_2$ and $C_2H_4$ at 500 and 30 sccm, respectively. On a planar $SiO_2$ substrate, high density SWNTs were grown at a minimum temperature of $760^{\circ}C$. In the case of growth using nanoporous templates, many suspended SWNTs were also observed from the samples grown at $760^{\circ}C$; low values of $I_D/I_G$ in the Raman spectra were also obtained. This means that the temperature of $760^{\circ}C$ is sufficient for SWNT growth in ethylene-based CVD and that ethylene is more effective that methane for low temperature growth. Our results provide a recipe for low temperature growth of SWNT; such growth is crucial for SWNT-based applications.

Selective Area Epitaxy of GaAs and InGaAs by Ultrahigh Vacuum Chemical vapor Deposition(UHVCVD) (Ultrahigh Vacuum Chemical Vapor Deposition (UHVCVD)법에 의한 GaAs와 InGaAs 박막의 선택 에피택시)

  • 김성복
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.3
    • /
    • pp.275-282
    • /
    • 1995
  • III족 원료 가스로 triethylgallium(TEGa)과 trimethylindium(TMIn)을 사용하고 V족 원료 가스로 사전 열 분해하지 않은 arsine(AsH3)과 monoethylarsine(MEAs)을 사용하여 ultrahigh vacuum chemical vapor deposition(UHVCVD)법으로 Si3N4로 패턴된 GaAs(100)기판 위에 GaAs와 InGaAsqkr막을 선택적으로 에피택시 성장을 하였다. V족 원료 가스를 사전 열 분해하지 않으므로 넓은 성장 온도 구간과 V/lll 비율에서도 선택적으로 박막이 성장되었다. 또한 선택 에피택시의 성장 메카니즘을 규명하기 위하여 다양한 filling factor(전체면적중 opening된 면적의 비율)를 가지는 기판을 제작하여 성장에 사용하였다. UHVCVD법에서는 마스크에 면적중 opening된 면적의 비율)를 가지는 기판을 제작하여 성장에 사용하였다. UHVCVD법에서는 마스크에 입사된 분자 상태의 원료 기체가 탈착된 후 표면 이동이나 가스 상태의 확산과정 없이 마스크로부터 제거되므로 패턴의 크기와 모양에 따른 성장 속도의 변화나 조성의 변화가 없을 뿐만 아니라 chemical beam epitaxy(CBE)/metalorganic molecular beam epitaxy(MOMBE)법에서 알려진 한계 성장온도 이하에서 선택 에피택시 성장이 이루어졌다.

  • PDF

Characterization of Low-Temperature Graphene Growth with Plasma Enhanced Chemical Vapor Deposition

  • Ma, Yifei;Kim, Dae-Kyoung;Xin, Guoqing;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.421-421
    • /
    • 2012
  • Graphene has drawn enormous attention owing to its outstanding properties, such as high charge mobility, excellent transparence and mechanical property. Synthesis of Graphene by chemical vapor deposition (CVD) is an attractive way to produce large-scale Graphene on various substrates. However the fatal limitation of CVD process is high temperature requirement(around $1,000^{\circ}C$), at which many substrates such as Al substrate cannot endure. Therefore, we propose plasma enhanced CVD (PECVD) and decrease the temperature to $400^{\circ}C$. Fig. 1 shows the typical structure of RF-PECVD instrument. The quality of Graphene is affected by several variables. Such as plasma power, distance between substrate and electronic coil, flow rate of source gas and growth time. In this study, we investigate the influence of these factors on Graphene synthesis in vacuum condition. And the results were checked by Raman spectra and conductivity measurement.

  • PDF

Chemical Vapor Deposition Polymerization of Poly(arylenevinylene)s and Applications to Nanoscience

  • Joo, Sung-Hoon;Lee, Chun-Young;Kim, Kyung-kon;Lee, Ki-Ryong;Jin, Jung-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.169-184
    • /
    • 2006
  • A review is made on the chemical vapor deposition polymerization (CVDP) of insoluble and infusible poly(arylenevinylene)s and its applications to nanoscience. Poly(p-phenylenevinylene) (PPV), poly(naphthylenevinylene)s, poly(2,5-thinenylenevinylene) (PTV), and other homologous polymers containing oligothiophenes could be prepared by the CVDP method in the form of films, tubes, and fibers of nano dimensions. They would be readily converted to graphitic carbons of different structures by thermal treatment. Field emission FE) of carbonized PPV nanotubes, photoconductivity of carbonized PPV/PPV bilayer nanotubes and nanofilms also were studied.

Passivation of organic light emitting diodes with a-$SiN_x$ thin films grown by catalyzer enhanced chemical vapor deposition

  • Jeong, Jin-A;Kang, Jae-Wook;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.659-662
    • /
    • 2007
  • The characteristics of a $SiN_x$ passivation layer grown by a specially designed catalyzer enhanced chemical vapor deposition (CECVD) system and electrical and optical properties of OLEDs passivated with the $SiN_x$ layer are described. Despite the low substrate temperature, the single $SiN_x$ passivation layer, grown on the PC substrate, exhibited a low water vapor transmission rate of $2{\sim}6{\times}10^{-2}\;g/m^2/day$ and a high transmittance of 87 %. In addition, current-voltage-luminescence results of an OLED passivated with a 150 nm-thick $SiN_x$ film compared to nonpassivated sample were identical indicating that the performance of an OLED is not critically affected by radiation from tungsten catalyzer during the $SiN_x$ deposition.

  • PDF