• 제목/요약/키워드: vapor pressure

검색결과 1,695건 처리시간 0.043초

증기 공동현상이 발생하는 무한 소폭 스퀴즈 필름 댐퍼 성능과 오일 공급압력의 영향 (The Effect of Oil Supply Pressure on the Performance of Vapor Cavitated Short Squeeze Film Dampers)

  • 정시영
    • Tribology and Lubricants
    • /
    • 제24권3호
    • /
    • pp.147-153
    • /
    • 2008
  • The effect of oil supply pressure on the performance of vapor cavitated short squeeze film dampers is examined. Vapor cavitation is characterized by film rupture occurring as a result of evaporating oils. The pressure of vapor cavity in the film is almost zero in absolute pressure and nearly constant. Pan's model about the shape of vapor cavity is utilized for studying the effect of vapor cavitation on the damping capability of a short squeeze film damper. As the level of oil supply pressure is increasing, vapor cavitation is suppressed so that the direct damping coefficient increases and the cross coupled damping coefficient decreases. Futhermore, the analysis of the unbalance responses of a rigid rotor supported on cavitated squeeze film dampers shows that a significant reduction in rotor amplitude and force transmissibility is possible by controlling the oil supply pressure into short squeeze film dampers.

고융점 산화물에 대한 고온 증발 (High Temperature Vaporization of the High Melting Point Oxides)

  • 이홍림
    • 한국세라믹학회지
    • /
    • 제15권2호
    • /
    • pp.72-78
    • /
    • 1978
  • The vapor pressure of the high melting point oxides, MgO, $Cr_2O_3$, and $MgCr_2O_4$ were measured over the temperature range 1300 to 175$0^{\circ}C$ under vacuum <$10^{-5}$ torr by the Langmuir and the Knudsen method. The Langmuir vapor pressure was increased with elevating temperature and with increasing porosity of the specimen. The difference between the vapor preseures measured by the Langmuir and the Knudsen method was decreased with elevating temperature and the Langmuir vapor pressure finally reached the Knudsen vapor pressure at the melting point when extrapolated. The vapor pressure of other important oxides with high melting points, i.e., $Al_2O_3$, $ThO_2$, $Yb_2O_3$ and $Y_2O_3$ were cited from the references. The Langmuir and the Knudsen vapor pressure of these oxides also showed the same results, i.e., they showed the same value at their melting points.

  • PDF

고압 나트륨램프의 점등과 소등을 위한 제어기의 릴레이 접점의 융착 방지 (The Prevention of Melting Contact in Accordance Relay of Controller for Turn on/off High Pressure Sodium Vapor Lamp)

  • 한태환;우천희
    • 전기학회논문지P
    • /
    • 제53권3호
    • /
    • pp.148-151
    • /
    • 2004
  • For turn on high pressure sodium vapor lamp, Starting Voltage is very important factor. This starting voltage supply to high pressure sodium vapor lamp as electric discharge lamp, Electric field is producted in electric discharge tube, So accelerative electron collide against vapor atom and second electron is generated, And rapidly the current flow to electric discharge tube. This starting voltage is high voltage and source for melting contact that relay is according as turn on/off high pressure sodium vapor lamp. Consequently, This paper propose that the prevention of melting contact in accordance relay of controller for turn on/off high pressure sodium vapor lamp.

Modeling of Pressure Drop for Water Vapor Flow across Tube Banks inside Horizontal Tube Absorber

  • Phan Thanh Tong;Yoon Jung-In;Kim Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.483-493
    • /
    • 2006
  • A model for a pressure drop of water vapor flow across tube banks in a horizontal tube absorber of an absorption chiller/heater using LiBr solution as a working fluid has been developed based on a commercial 20RT(70kW) absorption chiller/heater. The numerical results show that the characteristic of the pressure drop in the shell side of the horizontal tube absorber is completely different from that in a conventional shell and tube heat exchanger. Especially, solution film thickness has significant influence on the vapor pressure drop in the horizontal tube absorber. In addition, the effects by the tube diameters, the longitudinal pitch to diameter ratio, and Reynolds number of the vapor flow, on the vapor pressure drop have been studied to evaluate the compactness of tube absorber. It was found that the vapor pressure drop decreases as tube diameter increases, the longitudinal pitch to diameter ratio increases, and Reynolds number of the vapor flow decreases. A comparison of the present study results with well-established experimental and numerical results showed a good overall agreement.

NRC 증기압 암석 파쇄제에 의한 PMMA 블록의 동적 파괴 과정에 관한 실험 및 수치해석적 연구 (Experimental and Numerical Study on the Dynamic Fracture Processes of PMMA Block by NRC Vapor Pressure Fracture Agent)

  • 민경조
    • 한국방재안전학회논문집
    • /
    • 제16권1호
    • /
    • pp.91-103
    • /
    • 2023
  • 본 연구의 목적은 테르밋 반응으로 결정화된 액체혼합물을 순간적으로 기화시켜, 이에 따라 발생되는 증기압을 이용하여 암석 및 콘크리트를 파쇄시키는 Nonex Rock Cracker(NRC) 암석 파쇄제의 동적 파괴 특성을 분석하고 파괴패턴을 예측할 수 있는 해석기법을 개발하기 위함이다. NRC 암석 파쇄제의 순간적의 증기압 발생 특성을 분석하기 위하여 인공취성재료로 알려진 Polymethyl methacrylate(PMMA) 블록을 대상으로 NRC를 장전하여 파쇄시험을 수행하였다. NRC의 증기압 발생순간을 촬영하기 위하여 초고속 카메라를 활용하였으며, 장약실과 연결된 관측공에 동적압력게이지를 부착하여 장약공 압력-시간이력을 계측하였다. 증기압 암석 파쇄제에 의한 PMMA 블록의 파괴패턴을 모사하기 위하여 2차원 동적 파괴 과정 해석 기법인 2D Dynamic Fracture Process Analysis(2DDFPA)가 활용되었으며, 계측된 장약공 압력-시간이력을 고려한 입사압력함수를 결정하였다. 제안된 해석조건을 활용하여 화강암재료와 고성능 폭약에 의하여 발생될 수 있는 파괴패턴에 대하여 고찰하였다.

An Experimental Study of Water Vapor Pressure Change by Ambient Temperature at the Interface between Concrete and Fluid-Applied Membrane Layer

  • Ko, Jin-Soo;Kim, Byung-Yun;Park, Sung-Woo;Lee, Mun-Hwan;Lee, Sung-Bok
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.15-23
    • /
    • 2009
  • Over about 30% of problems in construction is related to water-leaking, and the loss from this problem can incur as much as three times the cost of initial construction. Thus, water vapor pressure is known to be the primary cause of defective waterproofing. Accordingly, the theories on the relationship between water pressure and temperature as well as damp-proofing volume of concrete and the change in vapor pressure volume were reviewed and analyzed in this study by making test samples after spraying a dampness remover and applying waterproofing materials to the prepared test specimens. The result of measuring water vapor pressure with the surface temperature of the waterproofing (fluid-applied membrane) layer at the experimental temperature setting of about $10^{\circ}C$, which is the annual average temperature of Seoul, indicated that (1) the temperature of the fluid-applied membrane elevated to about $40^{\circ}C$, and the water vapor pressure generated from the fluid-applied membrane was about 0.03 N/mm 2 when the surface temperature of the waterproofing layer was raised to about $80^{\circ}C$. (2) when the temperature of the fluid-applied membrane of the waterproofing layer was raised from $30^{\circ}C$ to $35^{\circ}C$, water vapor pressure of about 0.01 N/mm 2 was generated, and (3) when a thermal source was applied to the fluid-applied membrane (waterproofing) layer, the temperature increased from $35^{\circ}C$ to $40^{\circ}C$, and approximately $0.005\;N/mm^2$ of water vapor pressure was generated.

콘크리트와 도막 방수층 계면에 발생되는 수증기압에 관한 실험적 연구 (An Experimental Study of Water Vapor Pressure that occurs at the Interface of a Fluid-Applied Membrane and Concrete)

  • 고진수;김문희;이성복;신윤호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 추계 학술논문 발표대회 논문집
    • /
    • pp.147-150
    • /
    • 2006
  • Of the total defects that have occurred recently in the Korean construction market, over 30% are caused by the construction of defective waterproofing, and the phenomenon of air pockets in the waterproofing layer, which is caused by the concrete vapor pressure, is known to be the primary cause of defective waterproofing. Accordingly, in this study the theory about the relationship between water pressure and temperature as well as the damp-proofing volume of concrete and, then, the change of vapor pressure volume was measured and analyzed by making a test sample after spraying a dampness remover and a waterproofing material to a prepared test body. As a result of measuring the water vapor pressure for the surface temperature of the waterproofing layer with the fluid-applied membrane temperature based on about $10^{\circ}C$, which is the average temperature of Seoul, it was found that first, the fluid-applied membrane elevated up to about $40^{\circ}C$, and the water vapor pressure generated from the fluid-applied membrane was about $0.3kgf/cm^2$ when the surface temperature of the waterproofing layer was raised up to about $80^{\circ}C$. Second, when the fluid-applied membrane temperature of the waterproofing layer was raised from $30^{\circ}C\;to\;35^{\circ}C,\;about\;0.1kgf/cm^2$ of water vapor pressure was generated, and when supplying a thermal source to raise the fluid-applied membrane temperature of the waterproofing layer from $35^{\circ}C\;to\;40^{\circ}C$, approximately $0.05kgf/cm^2$ of water vapor pressure was generated.

  • PDF

고해상도 상대습도 모의를 위한 농산촌 지역의 수증기압 분석 (An Analysis of Water Vapor Pressure to Simulate the Relative Humidity in Rural and Mountainous Regions)

  • 김수옥;황규홍;홍기영;서희철;방하늘
    • 한국농림기상학회지
    • /
    • 제22권4호
    • /
    • pp.299-311
    • /
    • 2020
  • 농산촌 지역 단일 집수역인 전남 구례군 간전면 중대리계곡과 경남 하동 악양면에서 각각 6지점과 14지점의 기상관측자료를 수집하여 복잡지형에서의 수증기압 및 상대습도 분포를 분석하였다. 중대리계곡에서는 2014년 12월 19일부터 2015년 11월 23일까지, 악양계곡에서는 2012년 8월 15일부터 2013년 8월 18일까지 가장 고밀도로 측정한 시기의 매시 기온과 습도(지면 위 1.5m)를 이용, 농업기상재해 조기경보시스템에서 사용되고 있는 기존의 수증기압 추정방식과 실제 수증기압을 비교하였다. 관측한 수증기압의 해발고도에 따른 기울기는 시간대(0300, 0600, … 2400 LST)에 따라 변동되었고, 야간일수록 위 아래의 수증기압차가 증대되었다. 지형·지표 조건이 다양한 악양계곡 관측 지점에서는 해발고도 외의 요인으로 인한 수증기압 변이가 지점별로 시간대에 따라 다르게 나타났다. 실제에 더 가까운 수증기압 및 상대습도 추정을 위해, 연구 대상지역의 관측자료로 해발고도 편차 당 수증기압 변화를 조정하는 계수를 도출하였다. 상대습도는 포화수증기압 대비 추정된 수증기압으로 모의하였으며, 조기경보시스템에서 사용된 기존 방법보다 도출된 계수를 활용한 추정방식에서 오차가 더 개선되었음을 확인하였다.

주석-물 시스템의 증기폭발시 발생하는 압력거동에 대한 실험적 연구 (An Experimental Investigation on the Pressure Behavior Accompanying the Explosion of Tin in Water)

  • 신용승;송진호;김종환;박익규;홍성완;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.51-56
    • /
    • 2001
  • Vapor explosion is one of the most important problems encountered in severe accident management of nuclear power plants. In spite of many efforts, a lot of questions still remain for the fundamental understanding of vapor explosion phenomena. Therefore, KAERI launched a real material experiment called TROI using 20 kg of UO2 and ZrO2 to investigate the vapor explosion phenomena. In addition, a small-scale experiment with molten-tin/water system was performed to quantify the characteristics of vapor explosion and to understand the phenomenology of vapor explosion. A number of instruments were used to measure the physical change occurring during the vapor explosion. In this experiment, the vapor explosion generated by molten fuel water interaction is visualized using high speed camera and the pressure behavior accompanying the explosion is investigated.

  • PDF

가열조건에 따른 초고강도 콘크리트의 내부수증기압력 평가 (Evaluation on Vapor Pressure of Ultra-high-strength Concrete by Heating Condition)

  • 황의철;김규용;윤민호;이보경;서원우;백재욱
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.224-225
    • /
    • 2017
  • Ultra-high-strength concrete exposed to high temperature is likely to cause spalling. Spalling is caused by the vapor pressure of the concrete, and the vapor pressure may be different depending on the heating conditions of the concrete. Therefore, in this study, a ring-type restrained specimen was fabricated using ultra-high-strength concrete and the vapor pressure generated in the concrete by heating condition(rapid and slow heating) was evaluated.

  • PDF