DOI QR코드

DOI QR Code

Experimental and Numerical Study on the Dynamic Fracture Processes of PMMA Block by NRC Vapor Pressure Fracture Agent

NRC 증기압 암석 파쇄제에 의한 PMMA 블록의 동적 파괴 과정에 관한 실험 및 수치해석적 연구

  • Gyeongjo Min (Department of Mineral Resources and Energy Engineering, Jeonbuk National University)
  • 민경조 (전북대학교 자원.에너지공학과)
  • Received : 2023.03.15
  • Accepted : 2023.03.30
  • Published : 2023.03.31

Abstract

This study aims to investigate the dynamic fracture characteristics of rocks and rock-like materials subjected to the Nonex Rock Cracker (NRC), a vapor pressure crushing agent that produces vapor pressure by instantaneously vaporizing a liquid mixture crystallized through the thermite reaction. Furthermore, the study seeks to develop an analytical technique for predicting the fracture pattern. A dynamic fracture test was performed on a PMMA block, an artificial brittle material, using the NRC. High-speed cameras and dynamic pressure gauges were employed to capture the moment of vapor pressure generation and measure the vapor pressure-time history, respectively. The 2-dimensional Dynamic Fracture Process Analysis (2D DFPA) was used to simulate the fracture process caused by the vapor pressure, with the applied pressure determined based on the vapor pressure-time history. The proposed analytical method was used to examine various fracture patterns with respect to granite material and high-performance explosives.

본 연구의 목적은 테르밋 반응으로 결정화된 액체혼합물을 순간적으로 기화시켜, 이에 따라 발생되는 증기압을 이용하여 암석 및 콘크리트를 파쇄시키는 Nonex Rock Cracker(NRC) 암석 파쇄제의 동적 파괴 특성을 분석하고 파괴패턴을 예측할 수 있는 해석기법을 개발하기 위함이다. NRC 암석 파쇄제의 순간적의 증기압 발생 특성을 분석하기 위하여 인공취성재료로 알려진 Polymethyl methacrylate(PMMA) 블록을 대상으로 NRC를 장전하여 파쇄시험을 수행하였다. NRC의 증기압 발생순간을 촬영하기 위하여 초고속 카메라를 활용하였으며, 장약실과 연결된 관측공에 동적압력게이지를 부착하여 장약공 압력-시간이력을 계측하였다. 증기압 암석 파쇄제에 의한 PMMA 블록의 파괴패턴을 모사하기 위하여 2차원 동적 파괴 과정 해석 기법인 2D Dynamic Fracture Process Analysis(2DDFPA)가 활용되었으며, 계측된 장약공 압력-시간이력을 고려한 입사압력함수를 결정하였다. 제안된 해석조건을 활용하여 화강암재료와 고성능 폭약에 의하여 발생될 수 있는 파괴패턴에 대하여 고찰하였다.

Keywords

Acknowledgement

The author would like to thank Prof. Sangho Cho at Jeonbuk National University in South Korea and Prof. Daisuke Fukuda at Hokkaido University in Japan for their valuable guidance and support throughout this research. The author also appreciates the assistance provided by Mr. Gyeonggyu Kim at Jeonbuk National University, during the experimental phase. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A3074451).

References

  1. Chen, H., X. Qiu, X. Shi, J. Zhang, X. Huo, and D. Li. (2022). Experimental Study on Fracturing Characteristics of Double-Hole Blasting under Static Stresses. Frontiers in Earth Science. 9: 1463.
  2. Cho, S. H. (2003). Dynamic Fracture Process Analysis of Rock and Its Application to Fragmentation Control in Blasting. Hokkaido. Japan: School of Engineering. University of Hokkaido.
  3. Cho, S. H. and K. Kaneko. (2004). Influence of the Applied Pressure Waveform on the Dynamic Fracture Processes in Rock. International Journal of Rock Mechanics and Mining Sciences. 41(5): 771-784. https://doi.org/10.1016/j.ijrmms.2004.02.006
  4. Cho, S. H., Y. Nakamura, B. Mohanty, H. S. Yang, and K. Kaneko. (2008). Numerical Study of Fracture Plane Control in Laboratory-Scale Blasting. Engineering Fracture Mechanics. 75(13): 3966-3984. https://doi.org/10.1016/j.engfracmech.2008.02.007
  5. Cho, Sang-Ho, Yun-Young Jeong, Kwang-Yum Kim, and Katsuhiko Kaneko. (2009). Study on the Precise Controlling of Fracture Plane in Smooth Blasting Method. Tunnel and Underground Space. 19(4): 366-372.
  6. Choi, Byung-Hee, Myoung-Soo Kang, Chang-Ha Ryu, and Jae-Woong Kim. (2015). Explosion Modelling for Crack Propagation Near Blast Holes in Rock Plate. Explosives and Blasting. 33(1): 13-20.
  7. Daehnke, A., H. P. Rossmanith, and J. A. L. Napier. (1997). Gas Pressurisation of Blast-Induced Conical Cracks. International Journal of Rock Mechanics and Mining Sciences. 34(3-4): 263-e1.
  8. Donze, F. V., J. Bouchez, and S. A. Magnier. (1997). Modeling Fractures in Rock Blasting. International Journal of Rock Mechanics and Mining Sciences. 34(8): 1153-1163. https://doi.org/10.1016/S1365-1609(97)80068-8
  9. Duvall, W. I. (1953). Strain-Wave Shapes in Rock Near Explosions. Geophysics. 18(2): 310-323. https://doi.org/10.1190/1.1437875
  10. Hillerborg, A. (1983). Analysis of One Single Crack. Fracture Mechanics of Concrete (Developments in Civil Engineering). Elsevier.
  11. Hu, R., Z. Zhu, J. Xie, and D. Xiao. (2015). Numerical Study on Crack Propagation by Using Softening Model under Blasting. Advances in Materials Science and Engineering. 2015: 108580.
  12. Jeon, S., S. Choi, S. Lee, B. Jeon, and H. Jeong. (2019). Experimental Study on Dynamic Fracturing Behavior under Blasting Loading in PMMA. ISRM Rock Dynamics Summit.
  13. Jeong, Hoyoung, Byungkyu Jeon, Seungbum Choi, and Seokwon Jeon. (2020). Fracturing Behavior Around a Blasthole in a Brittle Material under Blasting Loading. International Journal of Impact Engineering. 140: 103562.
  14. Kim, Hyon-Soo, Seung-Kon Kim, Young-Su Song, Kwang-Yeom Kim, and Sang-Ho Cho. (2011). Numerical Study on the Effectiveness of Guide Holes on the Fracture Plane Control in Smooth Blasting. Tunnel and Underground Space. 21(3): 235-243. https://doi.org/10.7474/TUS.2011.21.3.235
  15. Labuz, J. F., S. P. Shah, and C. H. Dowding. (1985). Experimental Analysis of Crack Propagation in Granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 22(2): 85-98. https://doi.org/10.1016/0148-9062(85)92330-7
  16. Lei, G., S. Zhu, X. Shi, and D. Wu. (2023). The Spatio-Temporal Evolution of Rock Failure due to Blasting under High Stress. Applied Sciences. 13(5): 2781.
  17. Li, X., K. Liu, and J. Yang. (2020). Study of the Rock Crack Propagation Induced by Blasting with a Decoupled Charge under High In Situ Stress. Advances in Civil Engineering. 2020: 1-18.
  18. Liu, R., Z. Zhu, M. Li, B. Liu, and D. Wan. (2019). Study on Dynamic Fracture Behavior of Mode I Crack under Blasting Loads. Soil Dynamics and Earthquake Engineering. 117: 47-57. https://doi.org/10.1016/j.soildyn.2018.11.009
  19. Mises, R. V. (1913). Mechanics of Solid Bodies in the Plastic-Deformable State. Proceedings of the Royal Society of Sciences in Gottingen. Mathematical-Physical Class. 582-592.
  20. Preece, D. S. and B. J. Thorne. (1996). A Study of Detonation Timing and Fragmentation Using 3-D Finite Element Techniques and a Damage Constitutive Model. SAND-96-0654C; CONF-960839-1. Sandia National Lab. (SNL-NM). Albuquerque, NM, USA.
  21. Renshu, Y., W. Yanbing, X. Huajun, and W. Maoyuan. (2012). Dynamic Behavior Analysis of Perforated Crack Propagation in Two-Hole Blasting. Procedia Earth and Planetary Science. 5: 254-261. https://doi.org/10.1016/j.proeps.2012.01.044
  22. Rossmanith, H. P., A. Daehnke, R. E. K. Nasmillner, N. Kouzniak, M. Ohtsu, and K. Uenishi. (1997). Fracture Mechanics Applications to Drilling and Blasting. Fatigue & Fracture of Engineering Materials & Structures. 20(11): 1617-1636. https://doi.org/10.1111/j.1460-2695.1997.tb01515.x
  23. Wang, Y., Z. Wen, G. Liu, J. Wang, Z. Bao, K. Lu, and B. Wang. (2020). Explosion Propagation and Characteristics of Rock Damage in Decoupled Charge Blasting Based on Computed Tomography Scanning. International Journal of Rock Mechanics and Mining Sciences. 136: 104540.
  24. Weibull, W. (1951). A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics. 18: 293-297. https://doi.org/10.1115/1.4010337
  25. Whittaker, B. N., R. N. Singh, and G. Sun. (1992). Rock Fracture Mechanics: Principles, Design and Applications. Elsevier.
  26. Xu, P., R. Yang, Y. Guo, and Z. Guo. (2020). Investigation of the Blast-Induced Crack Propagation Behavior in a Material Containing an Unfilled Joint. Applied Sciences. 10(13): 4419.
  27. Zhu, Z., B. Mohanty, and H. Xie. (2007). Numerical Investigation of Blasting-Induced Crack Initiation and Propagation in Rocks. International Journal of Rock Mechanics and Mining Sciences. 44(3): 412-424. https://doi.org/10.1016/j.ijrmms.2006.09.002