• Title/Summary/Keyword: valve train dynamics

Search Result 9, Processing Time 0.031 seconds

A Study on Dynamic Simulation and Cam Profile Optimization for OHV Type Valve Trains (OHV형 밸브트레인의 동특성 해석 및 최적 캠 형상설계에 관한 연구)

  • 김도중;윤수환;박병구;신범식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.110-122
    • /
    • 1996
  • The objective of this study is to understand the dynamic characterictics of OHV type valve trains and to design and optimal cam profile which will improve engine performance. A numerical model for valve train dynamics is presented, which aims at both accuracy and computational efficiency. The lumped mass model and distributed parameter model were used to describe the valve train dynamics. Nonlinear characterictics in the valve spring behavior were included in the model. Comprehensive experiments were carried out concerning the valve train dynamics, and the model was tuned based on the test results. The dynamic model was used in designing an optimal cam profile. Because the objective function has many local minima, a conventional local optimizer cannot be used to find an optimal solution. A modified adaptive random search method is successfully employed to solve the problem. Cam lobe area could be increased up to 7.3% without any penalties in kinematic and dynamic behaviors of the valve train.

  • PDF

A simulation model of valve train dynamics for cam profile optimizations (캠 형상 최적설계를 위한 밸브 트레인 동특성 해석 모델)

  • 김도중
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.53-63
    • /
    • 1993
  • A numerical modeling technique is proposed for computer simulations of high speed valve train dynamic terms in the valve spring reaction forces are calculated using linear vibration theory for given kinematic valve motions. Because the spring dynamics are analyzed before the time stepping integration, spring surge phenomena can be included without using additional computer time. In addition to that, steady state response of the valve dynamics can be obtained by just one cycle simulation. Consequently, valve train dynamics can be simulated very quickly without noticeable errors in accuracy. The experimental result prove the computer model developed here is accurate and also computationally efficient. The model is especially useful for cam profile optimizations.

  • PDF

Numerical Analysis for Valve Train Dynamics of an Internal Combustion Engine (내연기관 밸브 트레인 동역학의 수치해석)

  • 이기수;김동우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.31-39
    • /
    • 2003
  • Numerical analysis for valve train dynamics of an internal combustion engine is presented. The components of the valve train are modeled by finite element techniques, and the dynamic contacts between the components are analyzed by the solution strategies of differential algebraic equations. Also an iterative scheme similar to the augmented Lagrange multiplier method is employed to enforce the contact constraints. It is shown that the contact and separation between the components of the valve train can be computed by the finite element techniques, and the numerical examples are presented to demonstrate the efficiency of the solution.

An Analytical Study on the Dynamics of Center Pivot Rocker Arm Type Valve Train System with Roller (롤러를 장착한 로커암 타입 밸브트레인 시스템의 동적 거동 해석)

  • 한동철;신흥주;조명래
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.318-322
    • /
    • 1999
  • An analytical study about dynamic behavior of center pivot rocker arm type valve train system equipped with roller of diesel engine is developed. At first, a mathematical model for the dynamic analysis has been set up using the lumped parameter method. In that model, valve spring is divided as some mass elemehts so as to simulate spring surging, Then, how the design parameters, such as valve mass, rocker arm inertia, valve spring stiffness, and initial load on valve spring, affect valve dynamic behavior especially in the valve close area is scrutinized.

  • PDF

Dynamic Analysis of Engine Valve Train with Flexible Multibody Model Considering Contact between Components (부품간의 접촉을 고려한 유연체모델을 이용한 엔진 밸브트레인의 동특성 해석)

  • Hwang, Won-Gul;Sung, Won-Suk;Ahn, Ki-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.125-132
    • /
    • 2011
  • The dynamic characteristics of valve train are responsible for the dynamic performances of engine. We derived the equation of motion for 6 degrees of freedom model of the valve train. Computer model is also developed with flexible multibody model considering contact between components. The simulation results with these two models are compared with experimental results. We investigated the effect of the two spring models, TSDA (Translational Spring Damper Actuator) element and flexible body model, on the valve behavior and spring force. It is found that the dynamic behavior of the two models are not very different at normal operational velocity of the engine. By modeling contact between cam and tappet, the stress distributions of the cam were found. Using stress distribution obtained, contact width and contact stresses of the cam surface were calculated with Hertz contact theory.

Analysis of Elastohydrodynamic Lubrication Film under Dynamic Loads in Engine Valve Train System with Multigrid Multilevel Method (멀티그리드 멀티레벨 기법을 이용한 엔진 밸브 트레인의 동하중 탄성 유체 윤활 유막 해석)

  • 장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.151-159
    • /
    • 1998
  • 디젤 엔진의 푸쉬로드 타입의 밸브 트레인에서의 힘의 전달 과정을 기구학적 응용을 통하여 구하였다. 이러한 힘의 최종 전달 단계인 캠과 평판 종동물의 접촉에서의 작용하중과 상대 운동 속도를 계산하였고 접촉면에서의 유막 두께를 고체면의 탄성변형을 고려하여 계산하였다. 특히 탄성 유체 윤활의 해석을 하는데 있어서 안정성과 수렴성이 우수한 멀티그리드 멀티레벨 기법을 사용하였으며 동하중 상태를 고려하여 유막 두께를 계산하고 기존의 정상상태의 해석해와 비교하였다.

  • PDF

Study on the Transient EHL Fluid Film for the Dynamic Contact Behaviors between Cam and Follower with Multigrid Multilevel Method (다중격자 다중차원 기법을 응용한 캠과 종동물의 비정상 상태의 유막특성 연구)

  • 장시열
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.132-139
    • /
    • 2004
  • Many researches about the contacts between cam and follower have investigated EHL film thickness either without dynamic loading effect or only with curve fitting formula such as Dowson-Hamrock's, because including squeeze film effect makes it hard to obtain convergence and stability of computation. Therefore, inaccurate information about minimum film thickness without dynamic loading condition causes inappropriate design of cam profiles and wrong selection of cam and follower materials. In this work, computation tools both for kinematics and dynamics of valve train system of push-rod type and for fluid film thickness with elastic deformation on the basis of dynamic loading condition with multigrid multi-level method is developed. The computational results of minimum film thickness with the respects of both static and dynamic loading conditions are compared for the contact of flat follower over the entire cycle.

Analysis of Valvetrain Dynamics of an Internal Combustion Engine with Elastic Deformation of the Components (부품의 탄성변형을 고려한 내연기관 밸브트레인 동역학 해석)

  • Lee, Ki-Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.63-71
    • /
    • 2009
  • The elastic effects of the valve train components are analyzed by using the finite element models of the rocker arm and valve. The whole equations of motion of the valvetrain of an internal combustion engine formulated by finite element techniques are solved by imposing the contact conditions with the augmented Lagrange multiplier method. The velocity and acceleration constraints as well as the displacement constraints are imposed on the contact points. The numerical simulations show that, even if the magnitude of the elastic deformation of the components is very small, it may have large effects on the valvetrain dynamics of a high-speed engine.

Structural Analysis for Gear Column of Large Bore Diesel Engine (선박 추진용 대형 디젤엔진 기어컬럼의 구조해석)

  • Lee, Jong-Hwan;Nam, Dae-Ho;Son, Jung-Ho;Bae, Jong-Gug
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.448-452
    • /
    • 2008
  • 2-stroke marine diesel engine has generally one exhaust valve and three fuel injection nozzle which are key component for engine's performance and combustion. Fuel injection and exhaust valve driving system are driven by rotating of camshaft. Rotation of crank shaft drives the cam shaft through gear train that is composed of $3{\sim}4$ gear wheels. Gear column supporting the gear wheel has to bear against the dynamics forces by engine running as well as gearing forces. In this paper, structural analysis for engine structure and fatigue strength assessment of welded joint is shown. Repeatedly full cyclic simulation during one cycle is performed to investigate the structural behavior of engine. Fatigue analysis is carried out based on IIW using submodeling technique to obtain more detailed stress distribution.

  • PDF