• Title/Summary/Keyword: valve support

Search Result 68, Processing Time 0.021 seconds

Design Optimization of Valve Support with Enhanced Seismic Performance (내진성능 향상을 위한 밸브지지대 최적형상 설계)

  • Kim, Hyoung Eun;Keum, Dong Yeop;Kim, Dea Jin;Kim, Jun Ho;Hong, Seong Kyeong;Choi, Won Mok;Kim, Sang Yeong;Seok, Chang Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.997-1005
    • /
    • 2015
  • In this study, modal analysis and equivalent static load analysis for valve supports of 26" gas piping in gas stations were conducted and the existing straight and inclined types of valve supports were compared using seismic performance testing. Also, a new valve support shape was suggested by optimizing position of fastener holes, width and thickness of the support, and size of bracket. Improvement in seismic performance by design optimization was verified through equivalent static load analysis. The seismic performance of the newly proposed valve support was greatly improved and the maximum displacement and maximum stress of the seismic load was about 20% lower than those of the existing valve support.

Valve Support Design for Improved Flexural Rigidity Against Strong Earthquake (강진 대비 굽힘 강성 향상을 위한 밸브지지대 형상 설계)

  • Kim, Dae Jin;Kim, Hyoung Eun;Seok, Chang Sung
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.75-80
    • /
    • 2017
  • In this study, seismic performance of various types of valve supports in terms of flexural rigidity are evaluated by FEA using equivalent static load method. Flexural rigidity of the existing two types of valve supports can be effectively improved by simply adding one more bracket on the other side of support. New types of polygonal valve supports with a concept of fully stressed beam theory are suggested and it is verified that the new supports are rigid enough to withstand stronger earthquake which we should be prepared for.

발전소 배관지지용 유압완충기 개발

  • Park, Tae-Jo;Koo, Chil-Hyo;Cho, Gwang-Hwan;Lee, Dong-Ryul;Lee, Hyun;Kim, Yeon-Hwan
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.232-238
    • /
    • 1997
  • In this paper, a theoretical method is presented to design a hydraulic control valve system that consist of an important component in the hydraulic snubber. The hydraulic snubber is used essentially to support the piping systems at power plants. To calculate the force due to pressure drop and flow rate in the valve orifice and by-pass hole, Bernoulli equation is used. The Reynolds equation are numerically analyzed in the clearance gap between the valve cone and valve seat to estimate the friction force and leakage flow rate. Based on the detailed theoretical data, we developed successfully the hydraulic snubber for power plants.

  • PDF

Seismic Performance Evaluation of Valve Support using Simplified FE Model (단순 해석 모델을 이용한 밸브지지대 내진 성능 평가)

  • Kim, Sang-Young;Keum, Dong Yeop;Kim, Hyoung Eun;Kim, Dae Jin;Kim, Jun Ho;Hong, Seong Kyeong;Choi, Won Mok;Seok, Chang Sung
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.60-65
    • /
    • 2017
  • In this study, a simplified FE model for evaluating seismic performance of valve support was suggested and an apparatus for a real structure testing was developed. The seismic performances of three different types of valve supports were evaluated by the real structure testing. By comparing the results between the real structure testing and FEA using the simplified FE model, it was verified that the suggested simplified FE model can be utilized for comparative evaluation of seismic performance of valve supports.

Cavitation Condition Monitoring of Butterfly Valve Using Support Vector Machine (SVM을 이용한 버터플라이 밸브의 캐비테이션 상태감시)

  • 황원우;고명환;양보석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.119-127
    • /
    • 2004
  • Butterfly valves are popularly used in service in the industrial and water works pipeline systems with large diameter because of its lightweight, simple structure and the rapidity of its manipulation. Sometimes cavitation can occur. resulting in noise, vibration and rapid deterioration of the valve trim, and do not allow further operation. Thus, the monitoring of cavitation is of economic interest and is very importance in industry. This paper proposes a condition monitoring scheme using statistical feature evaluation and support vector machine (SVM) to detect the cavitation conditions of butterfly valve which used as a flow control valve at the pumping stations. The stationary features of vibration signals are extracted from statistical moments. The SVMs are trained, and then classify normal and cavitation conditions of control valves. The SVMs with the reorganized feature vectors can distinguish the class of the untrained and untested data. The classification validity of this method is examined by various signals that are acquired from butterfly valves in the pumping stations and compared the classification success rate with those of self-organizing feature map neural network.

A multi-layer approach to DN 50 electric valve fault diagnosis using shallow-deep intelligent models

  • Liu, Yong-kuo;Zhou, Wen;Ayodeji, Abiodun;Zhou, Xin-qiu;Peng, Min-jun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.148-163
    • /
    • 2021
  • Timely fault identification is important for safe and reliable operation of the electric valve system. Many research works have utilized different data-driven approach for fault diagnosis in complex systems. However, they do not consider specific characteristics of critical control components such as electric valves. This work presents an integrated shallow-deep fault diagnostic model, developed based on signals extracted from DN50 electric valve. First, the local optimal issue of particle swarm optimization algorithm is solved by optimizing the weight search capability, the particle speed, and position update strategy. Then, to develop a shallow diagnostic model, the modified particle swarm algorithm is combined with support vector machine to form a hybrid improved particle swarm-support vector machine (IPs-SVM). To decouple the influence of the background noise, the wavelet packet transform method is used to reconstruct the vibration signal. Thereafter, the IPs-SVM is used to classify phase imbalance and damaged valve faults, and the performance was evaluated against other models developed using the conventional SVM and particle swarm optimized SVM. Secondly, three different deep belief network (DBN) models are developed, using different acoustic signal structures: raw signal, wavelet transformed signal and time-series (sequential) signal. The models are developed to estimate internal leakage sizes in the electric valve. The predictive performance of the DBN and the evaluation results of the proposed IPs-SVM are also presented in this paper.

Effect of Valve Train Layout on Cam/Tappet Wear Characteristics of End Pivot Rocker Arm Type OHC Valve Train (끝단 지지 로커암형 오버 헤드 밸브트레인의 캠/종동자 마모 특성에 미치는 밸브트레인 레이아웃의 영향)

  • 이종원;장재영;김도중
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.184-192
    • /
    • 2001
  • Cam/tappet wear is one of the critical concerns in valve train deign. Maximum contact stress and minimum oil film thickness between the cam and tappet are usually checked for the estimation of wear characteristics. If the two extreme cases arise simultaneously, there is a strong possibility of cam/tappet wear. In this paper, effects of valve train layout on the wear characteristics were studied. Especially for swinging arm type valve trains, initial geometric layout must be very carefully defined to avoid wear problems. The study was performed fur an end pivot type OHC valve train, which had severe wear problems. Analysis results show that some geometric parameter affect very sensitively on the wear characteristics. Experiments were also performed for the original and modified valve trains, which strongly support the analysis results.

  • PDF

IV-TAP : Integrated Valve Train system Analysis Program (IV-TAP : 밸브트레인 통합 해석 프로그램)

  • 김지영;조명래;신흥주;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.258-262
    • /
    • 2000
  • This paper reports on the development of the analysis program of the valve train system, IV-TAP. It is essential to verify the stability of the design and to improve the performance of the system. In order to do that effi챠ently, it is required that integrated and interactive simulation analysis program. IV-TAP is developed in the base of the object-oriented, capsulation, modulization, OLE(objected linking and embedding) and variational design theory. So it contain the expandability and flexibility of the structure. In additon to that, it is programed to make the convenient user interface by using the visualization programming. It can support the modification of the valve element as well as the development of the valve system in the beginning. It is expected to reduce the money and effort for design the valve train system.

  • PDF

Mitral Valve Replacement with a Pulmonary Autograft in an Infant

  • Jeong, Yong Ho;Yun, Tae-Jin
    • Journal of Chest Surgery
    • /
    • v.51 no.2
    • /
    • pp.149-152
    • /
    • 2018
  • A 76-day-old infant weighing 3.4 kg was referred for surgical intervention for severe mitral valve stenoinsufficiency caused by leaflet fibrosis and calcification. He had ex perienced a cerebral infarction in the left middle cerebral artery territory, which was deemed attributable to an embolism of a calcified particle from the dysmorphic mitral valve. Because mitral valve replacement using a prosthetic valve was not feasible in this small baby, mitral valve replacement with a pulmonary autograft was performed. After a brief period of extracorporeal membrane oxygenation (ECMO) support, he was weaned from ECMO and was discharged home without further cardiovascular complications.

Development of Integrated Valve Train System Design Program (밸브트레인 시스템 통합 설계 프로그램 개발)

  • 조명래;김지운;오대윤;김지영;한동철
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1364-1369
    • /
    • 2002
  • This paper introduces the development of the analysis and design program of valve train system. In order to verify the stability of design and improve the performance of system efficiently, it is required that integrated and interactive simulation program. The presented program is developed in the base of the object-oriented, capsulation, modulization, OLE (objected linking and embedding) and various design theory. It contains the expandability and flexibility of the structure. In addition to that, it is programmed to make the convenient user interface by using the visualization programming. This program can support the modification of the valve element as well as the development of the valve train system in the beginning of design. It is expected to save the cost and time for the design of valve train system.