• 제목/요약/키워드: value-at-risk

검색결과 959건 처리시간 0.03초

전환사채 주식전환을 위한 조건부 VaR 최적화 (Conditional Value-at-Risk Optimization for Conversion of Convertible Bonds)

  • 박구현;심은택
    • 경영과학
    • /
    • 제28권2호
    • /
    • pp.1-16
    • /
    • 2011
  • In this study we suggested two optimization models to answer a question from an investor standpoint : how many convertible bonds should one convert, and how many keep? One model minimizes certain risk to the minimum required expected return, the other maximizes the expected return subject to the maximum acceptable risk. In comparison with Markowitz portfolio models, which use the variance of return, our models used Conditional Value-at-Risk(CVaR) for risk measurement. As a coherent measurement, CVaR overcomes the shortcomings of Value-at-Risk(VaR). But there are still difficulties in solving CVaR including optimization models. For this reason, we adopted Rockafellar and Uryasev's[18, 19] approach. Then we could approximate the models as linear programming problems with scenarios. We also suggested to extend the models with credit risk, and applied examples of our models to Hynix 207CB, a convertible bond issued by the global semiconductor company Hynix.

조건부 Value-at-Risk와 Expected Shortfall 추정을 위한 준모수적 방법들의 비교 연구 (Comparison of semiparametric methods to estimate VaR and ES)

  • 김민조;이상열
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.171-180
    • /
    • 2016
  • 바젤 위원회는 시장위험의 측정 도구로 Value-at-Risk(VaR)와 expected shortfall(ES)을 사용할 것을 제안하였다. 여러 문헌에서 VaR와 ES의 다양한 추정 방법들이 연구 되었다. 본 연구에서는 준모수적인 방법인 conditional autoregressive value at risk(CAViaR), conditional autoregressive expectile(CARE) 방법들, 그리고 Gaussian 준최대가능도 추정량(QMLE)를 이용한 방법을 사후 검정을 통해서 비교하고자 한다. 각 방법의 타당성을 확인하기 위해서, VaR에 대한 사후 검정은 unconditional coverage(UC)와 conditional coverage(CC) 검정을 사용하고 ES에 대한 검정은 붓스트랩 방법을 사용한다. S&P500 지수와 현대 자동차 주식가격 지수에 대하여 실증 자료 분석이 수행되었다.

FUZZY RISK MEASURES AND ITS APPLICATION TO PORTFOLIO OPTIMIZATION

  • Ma, Xiaoxian;Zhao, Qingzhen;Liu, Fangai
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.843-856
    • /
    • 2009
  • In possibility framework, we propose two risk measures named Fuzzy Value-at-Risk and Fuzzy Conditional Value-at-Risk, based on Credibility measure. Two portfolio optimization models for fuzzy portfolio selection problems are formulated. Then a chaos genetic algorithm based on fuzzy simulation is designed, and finally computational results show that the two risk measures can play a role in possibility space similar to Value-at-Risk and Conditional Value-at-Risk in probability space.

  • PDF

평균/VaR 최적화 모형에 의한 전환사채 주식전환 비중 결정 (Determination Conversion Weight of Convertible Bonds Using Mean/Value-at-Risk Optimization Models)

  • 박구현
    • 경영과학
    • /
    • 제30권3호
    • /
    • pp.55-70
    • /
    • 2013
  • In this study we suggested two optimization models to determine conversion weight of convertible bonds. The problem of this study is same as that of Park and Shim [1]. But this study used Value-at-Risk (VaR) for risk measurement instead of CVaR, Conditional-Value-at-Risk. In comparison with conventional Markowitz portfolio models, which use the variance of return, our models used VaR. In 1996, Basel Committee on Banking Supervision recommended VaR for portfolio risk measurement. But there are difficulties in solving optimization models including VaR. Benati and Rizzi [5] proved NP-hardness of general portfolio optimization problems including VaR. We adopted their approach. But we developed efficient algorithms with time complexity O(nlogn) or less for our models. We applied examples of our models to the convertible bond issued by a semiconductor company Hynix.

Value at Risk Forecasting Based on Quantile Regression for GARCH Models

  • Lee, Sang-Yeol;Noh, Jung-Sik
    • 응용통계연구
    • /
    • 제23권4호
    • /
    • pp.669-681
    • /
    • 2010
  • Value-at-Risk(VaR) is an important part of risk management in the financial industry. This paper present a VaR forecasting for financial time series based on the quantile regression for GARCH models recently developed by Lee and Noh (2009). The proposed VaR forecasting features the direct conditional quantile estimation for GARCH models that is well connected with the model parameters. Empirical performance is measured by several backtesting procedures, and is reported in comparison with existing methods using sample quantiles.

서포트벡터기계를 이용한 VaR 모형의 결합 (Combination of Value-at-Risk Models with Support Vector Machine)

  • 김용태;심주용;이장택;황창하
    • Communications for Statistical Applications and Methods
    • /
    • 제16권5호
    • /
    • pp.791-801
    • /
    • 2009
  • VaR(Value-at-Risk)는 시장위험을 측정하기 위한 중요한 도구로 사용되고 있다. 그러나 적절한 VaR 모형의 선택에는 논란의 여지가 많다. 본 논문에서는 특정 모형을 선택하여 VaR 예측값을 구하는 대신 대표적으로 많이 사용되는 두개의 VaR 모형인 역사적 모의실험과 GARCH 모형의 예측값들을 서포트벡터기계 분위수 회귀모형을 이용하여 결합하는 방법을 제안한다.

Risk-Based Allocation of Demand Response Resources Using Conditional Value-at Risk (CVaR) Assessment

  • Kim, Ji-Hui;Lee, Jaehee;Joo, Sung-Kwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.789-795
    • /
    • 2014
  • In a demand response (DR) market run by independent system operators (ISOs), load aggregators are important market participants who aggregate small retail customers through various DR programs. A load aggregator can minimize the allocation cost by efficiently allocating its demand response resources (DRRs) considering retail customers' characteristics. However, the uncertain response behaviors of retail customers can influence the allocation strategy of its DRRs, increasing the economic risk of DRR allocation. This paper presents a risk-based DRR allocation method for the load aggregator that takes into account not only the physical characteristics of retail customers but also the risk due to the associated response uncertainties. In the paper, a conditional value-at-risk (CVaR) is applied to deal with the risk due to response uncertainties. Numerical results are presented to illustrate the effectiveness of the proposed method.

Estimating the Credit Value-at-Risk of Korean Property and Casuality Insurers

  • Hong, Yeon-Woong;Suh, Jung-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권4호
    • /
    • pp.1027-1036
    • /
    • 2008
  • Value at Risk(VaR) is a fundamental tool for managing market risks. It measures the worst loss to be expected of a portfolio over a given time horizon under normal market conditions at a given confidence level. Calculation of VaR frequently involves estimating the volatility of return processes and quantiles of standardized returns. In this paper, we introduced and applied the CreditMetrics model to estimate the credit VaR of Korean Property and Casuality insurers.

  • PDF

The Effect of Risk-Based Efficiency Value on Firm Value: A Case Study in Indonesia

  • JUNIAR, Asrid;FADAH, Isti;UTAMI, Elok Sri;PUSPITASARI, Novi
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권5호
    • /
    • pp.231-239
    • /
    • 2021
  • The purpose of this study is to analyze the effect of risk efficiency, financial decisions, and financial performance on firm value due to advances in financial reporting technology. This research was conducted on all banking sub-sector companies listed on the Indonesian capital market during a period of eight years, namely 2012-2019 which were selected using the purposive sampling method. The advancement of financial reporting technology is measured by two indicators based on the Internet financial reporting approach. Risk efficiency is measured using three indicators with a risk proxy relative efficiency approach using value at risk. Financial decisions are measured by two indicators that represent funding decisions and investment decisions. Financial performance is measured by two indicators with the profitability approach, and firm value is measured by two indicators based on the investor perception approach. The data analysis technique in this study used multivariate analysis with SEM-PLS. The empirical findings of this study are the advances in financial reporting technology, financial decisions, and risk-based efficiency value have a significant effect on firm value, while financial performance does not have a significant effect on firm value. Banking companies reduce risk to achieve efficiency and result in lower profits.

Vector at Risk와 대안적인 VaR (Vector at Risk and alternative Value at Risk)

  • 홍종선;한수정;이기쁨
    • 응용통계연구
    • /
    • 제29권4호
    • /
    • pp.689-697
    • /
    • 2016
  • 금융시장 위험관리 수단으로 많이 사용하는 기법 중의 하나는 Morgan이 제안한 최대손실금액을 추정하는 VaR (Value at Risk)이다. VaR은 한 산업의 금융위험 측정도구로 사용되어지지만 실제 생활에서는 여러 회사 또는 국내 전체의 산업의 VaR를 추정하는 경우가 많다. 따라서 투자할 여러 산업에 대하여 특정한 포트폴리오가 설정된 경우에 다변량분포에 대한 VaR를 추정하는 문제가 필요하다. 본 연구에서는 다변량분포에 대한 VaR를 추정하기 위하여, 다차원 분위 벡터를 제안하고, 이를 바탕으로 다차원 공간에서의 Vector at Risk를 정의한다. 다변량분포에 대하여 특정한 포트폴리오가 설정된 경우에, Vector at Risk 중에서의 한 점을 가장 적절한 VaR로 설정하는 방법을 제안한다. 이를 대안적인 VaR이라고 정의하고, 다변량 분포에 대한 이 방법에 대하여 토론한다. 2변량과 3변량의 예제를 통해 본 연구의 대안적인 VaR과 Morgan의 VaR를 각각 구하고, 비교 설명하면서 대안적인 VaR의 특징을 탐색한다.