References
- Andersson, F., Mausser, H., Rosen, D., and Uryasev, S. (2001). Credit risk optimization with condition value-at-risk, Mathematical Programming, 89, 273-291. https://doi.org/10.1007/PL00011399
- Barone-Adesi, G., Giannopoulos, K., and Vosper, L. (1999). VaR without correlations for portfolio of derivative securities, Journal of Futures Markets, 19, 583-602. https://doi.org/10.1002/(SICI)1096-9934(199908)19:5<583::AID-FUT5>3.0.CO;2-S
- Berkowitz, J., Christoffersen, P., and Pelletier, D. (2011). Evaluating Value-at-Risk models with desk-level data, Management Science, 57, 2213-2227. https://doi.org/10.1287/mnsc.1080.0964
- Chen, L. A. and Welsh, A. H. (2002). Distribution-function-based bivariate quantiles, Journal of Multivariate Analysis, 83, 208-231. https://doi.org/10.1006/jmva.2001.2043
- Heo, S. J., Yeo, S. C., and Kang, T. H. (2012). Performance analysis of economic VaR estimation using risk neutral probability distributions, Korean Journal of Applied Statistics, 25, 757-773. https://doi.org/10.5351/KJAS.2012.25.5.757
- Hong, C. S. and Kwon, T. W. (2010). Distribution fitting for the rate of return and value at risk, Journal of the Korean Data & Information Science Society, 21, 219-229.
- Hong, C. S. and Lee, J. H. (2011a). VaR estimation of multivariate distribution using Copula functions, Korean Journal of Applied Statistics, 24, 523-533. https://doi.org/10.5351/KJAS.2011.24.3.523
- Hong, C. S. and Lee, W. Y. (2011b). VaR estimation with multiple Copula functions, Korean Journal of Applied Statistics, 24, 809-820. https://doi.org/10.5351/KJAS.2011.24.5.809
- Jorion, P. (2007). Value at Risk, The New Benchmark for Market Risk (1st Ed.), McGraw-Hill, New York.
- Kang, M. J., Kim, J. Y., Song, J. W., and Song, S. J. (2013). Value at Risk with peaks over threshold: comparison study of parameter estimation, Korean Journal of Applied Statistics, 26, 483-494. https://doi.org/10.5351/KJAS.2013.26.3.483
- Krokhmal, P., Palmquist, J., and Uryasev, S. (2002). Portfolio optimization with conditional Value-at-Risk objective and constraints, Journal of Risk, 4, 11-27.
- Kupiec, P. (1995). Techniques for verifying the accuracy of risk management models, Journal of Derivatives, 2, 73-84. https://doi.org/10.3905/jod.1995.407918
- Li, D. X. (1999). Value at Risk based on the volatility skewness and kurtosis, Available from: http://www.riskmetrics.com/research/working/var4mm.pdf, RiskMetrics Group.
- Longin, F. M. (2000). From value at risk to stress testing: the extreme value approach, Journal of Banking & Finance, 24, 1097-1130. https://doi.org/10.1016/S0378-4266(99)00077-1
- Longin F. M. (2001). Beyond the VaR, Journal of Derivatives, 8, 36-48. https://doi.org/10.3905/jod.2001.319161
- Lopez, J. A. (1998). Methods for evaluating Value-at-Risk estimates, Economic Policy Review, 4, 119-124.
- Morgan, J. P. (1996). RiskMetrics, Technical Document (4th Ed.), JP Morgan, New York.
- Neftci, S. N. (2000). Value-at-Risk calculation extreme events and tail estimation, Journal of Derivatives, 7, 23-37. https://doi.org/10.3905/jod.2000.319126
- Park, J. S. and Jung, M. S. (2002). Market risk management strategies through VaR, KISDI Research Papers, Fall 2002, KISDI.
- Park, K. H., Ko, K. Y., and Beak, J. S. (2013). An one-factor VaR model for stock portfolio, Korean Journal of Applied Statistics, 26, 471-481 https://doi.org/10.5351/KJAS.2013.26.3.471
- Rockafellar, R. T. and Uryasev, S. (2000). Optimization of conditional value-at-risk, Journal of Risk, 2, 21-41. https://doi.org/10.21314/JOR.2000.038
- Rockafellar, R. T. and Uryasev, S. (2002). Conditional value-at-risk for general loss distributions, Journal of Banking & Finance, 26, 1443-1471. https://doi.org/10.1016/S0378-4266(02)00271-6
- Seo, S. H. and Kim, S. G. (2010). Estimation of VaR using extreme losses, and back-testing: case study, Korean Journal of Applied Statistics, 23, 219-234. https://doi.org/10.5351/KJAS.2010.23.2.219
- Yeo, S. C. and Li, Z. (2015). Performance analysis of volatility models for estimating portfolio value at risk, Korean Journal of Applied Statistics, 28, 541-599. https://doi.org/10.5351/KJAS.2015.28.3.541
- Yuzhi, C. (2010). Multivariate quantile function models, Statistica Sinica, 20, 481-496.
- Zangari, P. (1996). An improved methodology for measuring VaR, RiskMetrics Monitor, 2, 7-25.
Cited by
- Properties of alternative VaR for multivariate normal distributions vol.27, pp.6, 2016, https://doi.org/10.7465/jkdi.2016.27.6.1453
- Multivariate confidence region using quantile vectors vol.24, pp.6, 2017, https://doi.org/10.29220/CSAM.2017.24.6.641