• Title/Summary/Keyword: value of time

Search Result 14,817, Processing Time 0.05 seconds

Evaluation of Temperature and Precipitation over CORDEX-EA Phase 2 Domain using Regional Climate Model HadGEM3-RA (HadGEM3-RA 지역기후모델을 이용한 CORDEX 동아시아 2단계 지역의 기온과 강수 모의 평가)

  • Byon, Jae-Young;Kim, Tae-Jun;Kim, Jin-Uk;Kim, Do-Hyun
    • Journal of the Korean earth science society
    • /
    • v.43 no.3
    • /
    • pp.367-385
    • /
    • 2022
  • This study evaluates the temperature and precipitation results in East Asia simulated from the Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA) developed by the UK Met Office. The HadGEM3-RA is conducted in the Coordinated Regional climate Downscaling Experiment-East Asia (CORDEX-EA) Phase II domain for 15 year (2000-2014). The spatial distribution of rainbands produced from the HadGEM3-RA by the summer monsoon is in good agreement with the Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of water resources (APRODITE) data over the East Asia. But, precipitation amount is overestimated in Southeast Asia and underestimated over the Korean Peninsula. In particular, the simulated summer rainfall and APRODITE data show the least correlation coefficient and the maximum value of root mean square error in South Korea. Prediction of temperature in Southeast Asia shows underestimation with a maximum error during winter season, while it appears the largest underestimation in South Korea during spring season. In order to evaluate local predictability, the time series of temperature and precipitation compared to the ASOS data of the Seoul Meteorological Station is similar to the spatial average verification results in which the summer precipitation and winter temperature underestimate. Especially, the underestimation of the rainfall increases when the amounts of precipitation increase in summer. The winter temperature tends to underestimate at low temperature, while it overestimates at high temperature. The results of the extreme climate index comparison show that heat wave is overestimated and heavy rainfall is underestimated. The HadGEM3-RA simulated with a horizontal resolution of 25 km shows limitations in the prediction of mesoscale convective system and topographic precipitation. This study indicates that improvement of initial data, horizontal resolution, and physical process are necessary to improve predictability of regional climate model.

Study on Forage Cropping System Using Summer Forage Crops with Italian Ryegrass at Paddy Land of Gangjin Region in South Korea (남부지역 논에서 이탈리안 라이그라스와 하계 사료작물을 연계한 작부체계에 관한 연구)

  • Jeong Sung Jung;Se Young Lee;Mirae Oh;Hyung Soo Park;Ana Yun;Ki Choon Choi
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.1
    • /
    • pp.35-41
    • /
    • 2023
  • This experiment was carried out to examine double cropping system using Italian ryegrass (IRG) 'Kowinearly', whole crop rice 'Yeongwoo' and barnyard millet 'Jeju native' during the Oct. 2020 to Oct. 2022. Three kinds of forage crops were cultivated at paddy field in Livestock Institute, Jeollanamdo Agricultural Research and Extension Services, Jeollanamdo, South Korea. Whole crop rice (WCR) was sown in late May and barnyard millet (BM) sown early June each year after harvesting IRG. We examined dry matter yield and feed value of forage crops depending on harvest time of forage crops during the experimental period. The plant height in heading stage of IRG ranged from 108 to 112cm and dry matter yield ranged from 6,783 to 11,530 kg ha-1. The crude protein (CP) of IRG ranged from 6.0 to 8.44%, acid detergent fiber (ADF) ranged from 55.6 to 60.2% and neutral detergent fiber (NDF) ranged from 32.58 to 36.7%, The dry matter yield of WCR increased as the harvest stage was delayed (14,310 kg ha-1 in milk, 16,167 kg ha-1 in yellow ripen, and 18,891 kg ha-1 in mature). Similar to results of dry matter yield of WCR, dry matter yield of BM increased as the harvest stage was delayed (11,194 kg ha-1 in late heading. and 14,308 kg ha-1 in mature), However nutrient content of WCR and BM showed a decreasing trend. As shown in above results, the productivity of WCR after harvesting IRG was shown to be high at paddy field in the southern region. However, BM also was appeared to have potential as summer forage crops.

Deep Learning-based Fracture Mode Determination in Composite Laminates (복합 적층판의 딥러닝 기반 파괴 모드 결정)

  • Muhammad Muzammil Azad;Atta Ur Rehman Shah;M.N. Prabhakar;Heung Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.225-232
    • /
    • 2024
  • This study focuses on the determination of the fracture mode in composite laminates using deep learning. With the increase in the use of laminated composites in numerous engineering applications, the insurance of their integrity and performance is of paramount importance. However, owing to the complex nature of these materials, the identification of fracture modes is often a tedious and time-consuming task that requires critical domain knowledge. Therefore, to alleviate these issues, this study aims to utilize modern artificial intelligence technology to automate the fractographic analysis of laminated composites. To accomplish this goal, scanning electron microscopy (SEM) images of fractured tensile test specimens are obtained from laminated composites to showcase various fracture modes. These SEM images are then categorized based on numerous fracture modes, including fiber breakage, fiber pull-out, mix-mode fracture, matrix brittle fracture, and matrix ductile fracture. Next, the collective data for all classes are divided into train, test, and validation datasets. Two state-of-the-art, deep learning-based pre-trained models, namely, DenseNet and GoogleNet, are trained to learn the discriminative features for each fracture mode. The DenseNet models shows training and testing accuracies of 94.01% and 75.49%, respectively, whereas those of the GoogleNet model are 84.55% and 54.48%, respectively. The trained deep learning models are then validated on unseen validation datasets. This validation demonstrates that the DenseNet model, owing to its deeper architecture, can extract high-quality features, resulting in 84.44% validation accuracy. This value is 36.84% higher than that of the GoogleNet model. Hence, these results affirm that the DenseNet model is effective in performing fractographic analyses of laminated composites by predicting fracture modes with high precision.

Effect of Seasonal Distribution Temperature on Storability of Modified Atmosphere Packaged Baby Leaf Beet (계절별 수송 온도가 MA 포장한 어린잎 비트의 저장성에 미치는 영향)

  • Choi, In-Lee;Han, Su Jung;Kim, Ju Young;Ko, Young-Wook;Kim, Yongduk;Hwang, Myung-Keun;Yu, Wanggun;Kang, Ho-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.2
    • /
    • pp.85-89
    • /
    • 2018
  • The effects of distribution temperature due to season all changes on quality and storability of baby leaf beet (Beta vulgaris L.) was examined in modified atmosphere (MA) packages. The beet leaf had been harvested at the 10 cm leaf length stage and packaged with an oxygen transmission rate (OTR) film of $1,300cc{\cdot}m^{-2}{\cdot}day^{-1}{\cdot}atm^{-1}$ and then held at 4 different distribution temperatures which were $-2^{\circ}C$, $4^{\circ}C$, $20^{\circ}C$, or $30^{\circ}C$ for 5 hrs and then stored for 18 days at $8^{\circ}C$. The loss of fresh weight of packged baby leaf beet was lowest at the $4^{\circ}C$ treatment, and below 0.6% in all distribution temperature treatments. The atmosphere composition in packages did not show any significant differences among treatments. The oxygen conc. was the highest at 18.0% after the $4^{\circ}C$ treatment, carbon dioxide conc. showed the maximum value of 4% at the $30^{\circ}C$ and $-2^{\circ}C$ treatments, and ethylene conc. was highest at the $10^{\circ}C$ treatment after 10 days in storage. The hardness was the highest at the $4^{\circ}C$ treatment on the final storage day. The $4^{\circ}C$ treatment showed the highest visual quality and the lowest off-odor and aerobic plate count. Therefore, it is necessary to establish a low-temperature distribution system which is controlled under $4^{\circ}C$, because the baby leaf beet's storability and microbial growth are effected even during a short time of 5 hrs during the distribution process.

Retrieval of Sulfur Dioxide Column Density from TROPOMI Using the Principle Component Analysis Method (주성분분석방법을 이용한 TROPOMI로부터 이산화황 칼럼농도 산출 연구)

  • Yang, Jiwon;Choi, Wonei;Park, Junsung;Kim, Daewon;Kang, Hyeongwoo;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1173-1185
    • /
    • 2019
  • We, for the first time, retrieved sulfur dioxide (SO2) vertical column density (VCD) in industrial and volcanic areas from TROPOspheric Monitoring Instrument (TROPOMI) using the Principle component analysis(PCA) algorithm. Furthermore, SO2 VCDs retrieved by the PCA algorithm from TROPOMI raw data were compared with those retrieved by the Differential Optical Absorption Spectroscopy (DOAS) algorithm (TROPOMI Level 2 SO2 product). In East Asia, where large amounts of SO2 are released to the surface due to anthropogenic source such as fossil fuels, the mean value of SO2 VCD retrieved by the PCA (DOAS) algorithm was shown to be 0.05 DU (-0.02 DU). The correlation between SO2 VCD retrieved by the PCA algorithm and those retrieved by the DOAS algorithm were shown to be low (slope = 0.64; correlation coefficient (R) = 0.51) for cloudy condition. However, with cloud fraction of less than 0.5, the slope and correlation coefficient between the two outputs were increased to 0.68 and 0.61, respectively. It means that the SO2 retrieval sensitivity to surface is reduced when the cloud fraction is high in both algorithms. Furthermore, the correlation between volcanic SO2 VCD retrieved by the PCA algorithm and those retrieved by the DOAS algorithm is shown to be high (R = 0.90) for cloudy condition. This good agreement between both data sets for volcanic SO2 is thought to be due to the higher accuracy of the satellite-based SO2 VCD retrieval for SO2 which is mainly distributed in the upper troposphere or lower stratosphere in volcanic region.

Evapotranspiration of Soybean-Barley Cropping as a Function of Evaporation and Available Soil Water in the Root Zone (콩 보리 작부체계하(作付體系下)에서 대기증발요구(大氣蒸發要求) 및 토양수분(土壤水分)의 함수(函數)로서의 증발산량(蒸發散量))

  • Im, Jeong-Nam;Jung, Yeong-Sang;Ryu, Kwan-Shig;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.4
    • /
    • pp.213-220
    • /
    • 1982
  • Soil water changes in lysimeters with four different soils and two different available soil depths were monitored during the growing seasons of the soybean-barley cropping from 1977 to 1980 in Suweon to evaluate evapotranspiration (ET) as a function of available soil water and evaporative demand of the atmosphere. ET was calculated with soil water profile and water balance. Soil water content was measured with a neutron moisture depth gauage and The evaporative demand of the atmosphere was estimated with a class A pan evaporation. Rainfall. solar radiation, and wind speed were observed to examine heat and water balances. The average ET of soybeans ranged from 1.6 mm/day at seedling to 6.5 mm/day at flowering, and that of barley ranged from 0.5 mm/day at the regrowth stage to 4.6 mm/day at heading; however, a large variability was observed. The ratio of ET to pan evaporation ($ET/E_o$) ranged from 0.5 to 1.1 for soybeans and 0.4 to 1.2 for barley. The soil evaporation factor ($K_e$) of the $ET/E_o$ component decreased as the soil water depleted and the canopy developed. The crop transpiration factor ($K_t$), another component of $ET/E_o$, also was a function of time and the soil water. $K_t$ was constant when the available soil water fraction (f) in the root zone was greater than a threshold value, and $K_e$ was decreased linearly when f was lower than this threshold. The threshold was 0.7 for the moderate evaporative demand days, 0.4 to 0.5 for the low evaporative demand days, and 0.9 to 0.96 for the high evaporative demand days. Conclusively, the ET can be estimated from the evaporative demand of the atmosphere, $E_o$, $K_e$ and $K_t$, and the available soil water content in the root zone.

  • PDF

Growth kinetics and chlorine resistance of heterotrophic bacteria isolated from young biofilms formed on a model drinking water distribution system (모델 상수관망에 형성된 초기 생물막에서 분리한 종속영양세균의 생장 동역학 및 염소 내성)

  • Park, Se-Keun;Kim, Yeong-Kwan;Oh, Young-Sook;Choi, Sung-Chan
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.355-363
    • /
    • 2015
  • The present work quantified the growth of young biofilm in a model distribution system that was fed with chlorinated drinking water at a hydraulic retention time of 2 h. Bacterial biofilms grew on the surface of polyvinyl chloride (PVC) slides at a specific growth rate of $0.14{\pm}0.09day^{-1}$ for total bacteria and $0.16{\pm}0.08day^{-1}$ for heterotrophic bacteria, reaching $3.1{\times}10^4cells/cm^2$ and $6.6{\times}10^3CFU/cm^2$ after 10 days, respectively. The specific growth rates of biofilm-forming bacteria were found to be much higher than those of bulk-phase bacteria, suggesting that biofilm bacteria account for a major part of the bacterial production in this model system. Biofilm isolates exhibited characteristic kinetic properties, as determined by ${\mu}_{max}$ and $K_S$ values using the Monod model, in a defined growth medium containing various amounts of acetate. The lowest ${\mu}_{max}$ value was observed in bacterial species belonging to the genus Methylobacterium, and their slow growth seemed to confer high resistance to chlorine treatment (0.5 mg/L for 10 min). $K_S$ values (inversely related to substrate affinity) of Sphingomonas were two orders of magnitude lower for acetate carbon than those of other isolates. The Sphingomonas isolates may have obligate-oligotrophic characteristics, since the lower $K_S$ values allow them to thrive under nutrient-deficient conditions. These results provide a better understanding and control of multi-species bacterial biofilms that develop within days in a drinking water distribution system.

Effect of Freezing and Thawing Condition on the Physical Characteristics of Blanched Bean Sprouts as Home Meal Replacement (냉.해동 조건에 따른 간편편이식 콩나물의 물리적 품질 변화)

  • Jang, Min-Young;Jung, You-Kyoung;Min, Sang-Gi;Cho, Eun-Kyung;Lee, Mi-Yeon
    • Culinary science and hospitality research
    • /
    • v.20 no.6
    • /
    • pp.235-244
    • /
    • 2014
  • The purpose of this study was to investigate the effect of freezing and thawing rate on the physical properties of soybean sprouts to improve the quality of processed soybean sprouts during distribution and storage. Cooked soybean sprouts were frozen by air-blast freezing (ABF) system at $-45^{\circ}C$ or natural air convection freezing (NCF) system at $-24^{\circ}C$, then thawed using microwave oven by varying output power (0, 400, 800 and 1,000 W) until $75^{\circ}C$. The quality of soybean sprouts was measured by the water content, hardness and springiness. In addition, the internal microstructure of soybean sprouts was observed by optical microscope. For results, water content of soybean sprouts thawed by 1,000 W in a microwave showed the lowest value after natural air convection freezing. Springiness of soybean sprouts thawed by all amounts of output power was decreased in comparison with control. Hardness was increased only in soybean sprouts thawed by 1,000 W after air-blast freezing. However the gaps between springiness and hardness were relatively small with control at 1,000 W thawing, after air-blast freezing. Internal microstructure of the soybean sprouts was more damaged as freezing and thawing time were increased. In conclusion, high freezing and thawing rate might improves the quality of soy bean sprout, and IQF freezing and 1,000 W of microwave thawing appears to be the optimum condition for frozen HMR production. From the results freezing and thawing process parameters might can be use as quality control parameters as various type of sprout products processing.

The Clinical Usefulness of Spiral CT Angiography in the Diagnosis of Pulmonary Thromboembolism (폐색전증 진단에서 나선식 전산화 단층촬영 혈관조영술의 임상적 유용성)

  • Kim, Woo-Gyu;Lim, Byung-Sung;Kim, Mi-Young;Hwang, Hweung-Kon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.5
    • /
    • pp.669-680
    • /
    • 1999
  • Background: Pulmonary thromboembolism(PTE) is a life threatening disease that needs early diagnosis. Spiral CT angiography depict thromboemboli in the central pulmonary vessels with greater than 90% sensitivity and specificity, which approaches the results of pulmonary angiography in the Prospective Investigation of Pulmonary Embolism Diagnosis(PIOPED) study. This study was performed to evaluate the findings and the diagnostic value(clinical utility) of the spiral CT angiography with 2D image(multiplanar reformation) and 3D images(Shaded surface display, Minimal intensity projection) in the pulmonary thromboembolism. Methods: We retrospectively analysed spiral CT angiography and pulmonary angiography, lung scan and clinical recordings of 20 patients who had PTE diagnosed by spiral CT angiography(n=19 cases) or pulmonary angiography(n=l case) from September 1997 to August 1998. Among 20 patients who had underwent spiral CT angiography, 14 patients could be performed lung perfusion scan at the same time. We analyzed the vascular and parenchymal change in spiral CT angiogram. Results: Anatomical distribution of PTE was as follows: 1) left lung(n= 103)

  • PDF

A Study on the Nutritional Status in Hospitalized Patients with Pulmonary Tuberculosis (폐결핵 환자의 입원기간동안 영양상태 변화 연구)

  • You, Hyun-Jai;Kim, Yang-Ha
    • Journal of Nutrition and Health
    • /
    • v.42 no.7
    • /
    • pp.615-621
    • /
    • 2009
  • This study was conducted to evaluate the change of nutritional status and to analyze related factors in hospitalized tuberculosis (TB) patients during their hospitalization. The subjects were 398 men patients (mean age: 47.3 ${\pm}$ 14.4 y) who had hospitalized more than 3 months at TB hospital located in Seoul. The anthropometric and blood biochemical indices were measured, and dietary intakes were assessed. At the time of admission the body weight of subjects was about 76% of the average body weight of Korean men with same age, Body mass index (BMI) of subjects was 18.5 kg/$m^2$, and 53.8% of subjects were under weight status. Average level of blood hemoglobin and hematocrit of subjects was lower than the normal value. After 3 months of hospitalization period, the body weight and body mass index were significantly increased compared to admission by 3.9 kg (7.41%) and 1.4 kg/$m^2$ (7.61%)(p < 0.001), respectively. Blood levels of hemoglobin, hematocrit, albumin, and total protein were also significantly increased after 3 months of hospitalization period compared to admission (p < 0.001). The increment in the body weight and blood indices was significantly higher in below 29 years group than over 60 years group (p < 0.05). The increment in the body weight and body mass index was significantly higher in the under-body weight group compared to the normal-body weight group (p < 0.05). In conclusion the body weight and body mass index of subjects were significantly increased after 3 months of hospitalization period, and the age and body weight of subjects at admission were supposed to influence the degree of change in the nutritional status.