• Title/Summary/Keyword: vacuum time

Search Result 1,635, Processing Time 0.031 seconds

SOME MECHANICAL FACTORS AFFECTING MACHINE MILKING CHARACTERISTICS UNDER SEMI-ARID CONDITION

  • Ali, A.K.A.;Farah, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.475-480
    • /
    • 1992
  • The effect of mechanical factors and season of the year on milking characteristics (milk yield, time of milking, rate of milk flow, stripping time and tripping milk) were studied on 26 Holstein Friesian cows, raised under Saudi Arabia environmental conditions. Cows were in the third and fourth lactation and reached the peak. Cows milked twice a day with equal intervals. Three vacuum levels (34, 38 and 42 cfm) and two pulsation ratios were used to form six vacuum-pulsation combinations. The study was carried during two seasons Autumn-Winter (S1) and Spring-Summer (S2). After absorbing the cow equations least square analysis was used to analyze the data. Vacuum level 38 cfm and pulsation ratio 70:30 was the best among all combinations of vacuum level-pulsation ratio. No significant effect (p < .01) for season, up to the seventh half minute, on the rate of milk flow. However, season of the year has a significant effect on total milk yield, stripping time and stripping milk.

Discharge characteristics of MgO-PDP manufactured by using "all-in-vacuum" process

  • Yano, T.;Uchida, G.;Uchida, K.;Awaji, N.;Shinoda, T.;Kajiyama, H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.28-30
    • /
    • 2009
  • PDP panels with MgO protective layer are manufactured by using the "all-in-vacuum" process we have established [1]. This is the process aiming to keep the MgO surface as clean as possible after the evaporation. The panels are evaluated in term of discharge voltage, aging time, luminance, luminous efficacy, discharge time-lag. It is confirmed that the "all-in-vacuum" process particularly improves the aging time, discharge voltage and the discharge time-lag.

  • PDF

A Study on the Performance of Foamed Concrete for Cores Material of Metal Vacuum Insulation Panel (금속진공단열패널의 심재용 기포콘크리트의 성능에 관한 연구)

  • Hong, Sang-Hun;Kim, Bong-Joo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.417-423
    • /
    • 2020
  • In order to reduce cooling and heating, which is 40% of the energy consumption of buildings, it is important to improve the insulation of the skin. In order to improve the existing insulation, research is being conducted to apply a vacuum insulation panel(VIP) to buildings. However, VIP cannot be repaired, so we considered the metal vacuum insulation panel. Since the core of the metal vacuum pressure and have low thermal conductivity, foam concrete is adopted. However, preliminary experiments confirmed that the time to reach 0.001torr differs depending on the amount and nature of the bubbles. This effect is determined by the type of foaming agent and the density of the bubble slurry, the vacuum delivery time is determined to be the optimum foam concrete conditions are necessary. Therfore, this study aims to present basic data applicable to core materials by measuring vacuum delivery time and thermal conductivity change according to the foaming agent type and foam slurry density of foam large concrete which is core material of metal vacuum insulation panel. Experimental results and analysis show that compressive strength can be used regardless of the type of foam, In terms of thermal conductivity, it is stable to use vegetable foaming agents at 0.9g/㎤ or less. In terms of the vacuum delivery time, the foaming agent appeared similar regardless of the type of foaming agent, but it is considered suitable to use vegetable foaming agent based on compressive strength and thermal conductivity.

Comparison of the Quality of Frozen Skipjack Tuna Katsuwonus pelamis Thawed by Vacuum and Water Immersion (진공 해동과 침수 해동에 의한 냉동 가다랑어(Katsuwonus pelamis)의 품질 차이에 관한 연구)

  • Lee, Tae-Hun;Koo, Jae-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.635-639
    • /
    • 2012
  • Thawing is very important in tuna canning because it affects the yield and quality of the canned tuna, and productivity. The effects of vacuum thawing on the quality, yield, and thawing times of frozen skipjack were compared with conventional water immersion thawing. The time required to thaw frozen skipjack tuna (weight 2.5-3.0 kg) from $-10^{\circ}C$ to $-2^{\circ}C$ was 75, 60, and 37 min at a pressure of 17, 23, and 31 mmHg, respectively, corresponding to temperatures of 20, 25, and $30^{\circ}C$. The thawing time decreased with increasing pressure. Vacuum thawing shorten the thawing time by 58-80% compared with water immersion thawing at $20^{\circ}C$, and there was less difference between the core and skin temperatures than with water immersion thawing. No significant change in pH or histamine was observed according to thawing method, while the volatile basic nitrogen (VBN), trimethylamine (TMA), and K value were lower with vacuum thawing than water immersion thawing. Based on these results, we believe that vacuum thawing minimizes the biochemical and microbial changes that occur while thawing frozen skipjack tuna.

Effects of Pellet Moisture Content on the Physical Properties of Vacuum-puffed Yukwa

  • Shen, Xiao-Jun;Norajit, Krittika;Ryu, Gi-Hyung
    • Food Engineering Progress
    • /
    • v.15 no.3
    • /
    • pp.262-268
    • /
    • 2011
  • The effects of pellet moisture content on physical properties (expansion ratio, density and breaking strength) of vacuum-puffed Yukwa (non-oil puffed Yukwa) were investigated in this study. The Yukwa was made from the waxy rice steeped at 25 and $30^{\circ}C$ for 3, 5 and 10 days with pellet drying times (6, 8 and 10.5 hr). As the drying time increased from 6 to 10.5 hr at $50^{\circ}C$, the highest value of pellet moisture content (29.4%) was found in the samples made from the steeped waxy rice at $25^{\circ}C$ for 5 days after 6 hr drying, while the lowest value (16.3%) was found at $25^{\circ}C$ for 3 days after 10.5 hr drying. Both redness and yellowness values of vacuum-puffed Yukwa increased as the drying time increased. The expansion ratio of Yukwa was greatly affected by drying time, ranging from 2.07 (26.8% pellet moisture content) to 7.01 (24.0% pellet moisture content). From the data, it can be concluded that the pellet moisture content had a significant influence on the physical characteristics of vacuum-puffed Yukwa. With vacuum puffing condition of 3 min heating and 2 min puffing, the pellets with about 25% moisture content showed higher expansion ratio, and lower density and breaking strength.

Development of Vacuum Puffing Machine for Non-deep Fried Yukwa and Its Puffing Characteristics by Process Variables (비유탕 유과 제조를 위한 진공팽화기의 개발 및 공정변수에 따른 유과의 팽화특성)

  • Yu, Je-Hyeok;Ryu, Gi-Hyung
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.193-201
    • /
    • 2010
  • The aim of this study was to analyse the quality of Yukwa puffed by using a vacuum puffing machine and compare to deep-fried Yukwa. The effect of vacuum puffing condition including heating temperature(100-${160^{\circ}C}$), preheating time(0-8 min) and vacuum puffing time(5-20 min) on physical and microstructure characteristics of the Yukwa was investigated. Vacuum puffed Yukwa at ${100^{\circ}C}$ heating temperature, 6 min preheating time and 10 min puffing time had highest value in volumetric expansion ratio(10.04) and lowest value in bulk density(0.15 g/$cm^{3}$). The breaking strength showed the lowest value of 140 g/$cm^{3}$ in vacuum puffing Yukwa at ${100^{\circ}C}$ heating temperature, 6 min preheating time and 15 min puffing time. The Yukwa puffed with the vacuum puffing machine at ${100^{\circ}C}$ heating temperature, 6 min preheating time and 15 min puffing time had the higher value of bulk density and the lower value of volumetric expansion ratio than those of deep-fried Yukwa. Increasing preheating time and vacuum puffing time caused an increase in white and an decrease in yellowness. The vacuum-puffed Yukwa exhibited smaller and uniform cell structure, while deep-fried Yukwa exhibited apparently in larger pores inside and smaller pores near the surface layer. The optimum condition of vacuum puffing machine for the production of vacuum-puffing Yukwa was ${120^{\circ}C}$ heating temperature, 4 min preheating time and 5 min puffing time.

Vacuum Sealing Technology of the Flat Panel Display by using the Frit Glass Heatable in Vacuum (진공에서 소성 가능한 프릿을 이용한 평판디스플레이 진공실장기술)

  • Kwon, Sang Jik;Yoo, In Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.181-185
    • /
    • 2016
  • One of the important issues for fabricating the microelectronic display devices such as FED, PDP, and VFD is to obtain a high vacuum level inside the panel. In addition, sustaining the initial high vacuum level permanently is also very important. In the conventional packing technology using a tabulation method, it is not possible to obtain a satisfiable vacuum level for a proper operation. In case of FED, the poor vacuum level results in the increase of operating voltage for electron emission from field emitter tips and an arcing problem, resultantly shortening a life time. Furthermore, the reduction of a sealing process time in the PDP production is very important in respect of commercial product. The most probable method for obtaining the initial high vacuum level inside the space with such a miniature and complex geometry is a vacuum in-line sealing which seals two glass plates within a high vacuum chamber. The critical solution for the vacuum sealing is to develop a frit glass to avoid the bubbling or crack problems during the sealing process at high temperature of about $400^{\circ}C$ under the vacuum environment. In this study, the suitable frit power was developed using a mixture of vitreous and crystalline type frit powders, and a vacuum sealed CNT FED with 2 inch diagonal size was fabricated and successfully operated.

An Experimental Study on Thawing of Frozen Fish by the Vacuum System (진공장치를 이용한 동결어류의 해동에 관한 실험적 연구)

  • Choi, H.K.;Choe, S.Y.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.62-67
    • /
    • 2006
  • The maintenance of continuity on food processing has created a need for the rapid reinstatement of many types of frozen fish to an ambient temperature and good condition. A number of thawing methods are in current use have also several disadvantages in thawing time. discoloration mass loss caused by drying, capital and running cost. These damages are, it is claimed, either eliminated or improves by the vacuum system. An experimental study on the thawing for hair tail and Yellow croaker by the vacuum system were carried out. The Yellow croaker thawing time with this vacuum system took out 170 minutes to reach from $-10.3^{\circ}C\;to\;-0.8^{\circ}C$ at 20mmHg abs. and hair tail thawing time 220 minutes to reach from $-12.2^{\circ}C\;to\;0^{\circ}C$ at 20mmHg abs.

  • PDF

Development of real-time nanoscale contaminant particle characteristics diagnosis system in vacuum condition (진공공간 내 나노급 오염입자의 실시간 진단시스템 개발)

  • Kang, Sang-Woo;Kim, Taesung
    • Vacuum Magazine
    • /
    • v.2 no.3
    • /
    • pp.11-15
    • /
    • 2015
  • Particle characteristics diagnosis system (PCDS) was developed to measure submicron particle characteristics by modulation of particle beam mass spectrometry (PBMS) with scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). It is possible to measure the particle size distribution in real-time, and the shape, composition can be measured in sequence keeping vacuum condition. Apparatus was calibrated by measuring the size classified NaCl particle which generated at atmospheric pressure. After the calibration, particles were sampled from the exhaust line of plasma enhanced chemical vapor deposition (PECVD) process and measured. Result confirms that PCDS is capable for analyzing particles in vacuum condition.