• Title/Summary/Keyword: vacuum state

Search Result 719, Processing Time 0.036 seconds

Sputtering effect on chemical state changes in amorphous Ga-In-Zn-O thin film

  • Lee, Mi-Ji;Gang, Se-Jun;Baek, Jae-Yun;Kim, Hyeong-Do;Jeong, Jae-Gwan;Lee, Jae-Cheol;Lee, Jae-Hak;Sin, Hyeon-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.134-134
    • /
    • 2010
  • Ga-In-Zn-O 물질은 비정질상태에서 높은 전하 운동성을 가지고 있으며 차세대 투명전극 thin film transistor 대안 소재로 각광받고 있다. 그런데 이 물질은 ion sputtering에 따라 전기적인 특성에 큰 변화가 관찰되고 있으며, 이는 표면에서의 화학적 상태가 전기적 특성을 좌우할 것이라는 것을 의미한다. 또한 보다 안정적이고 신뢰적인 소자를 구현하기 위해서는 ion sputtering에 의한 표면에서의 화학적 특성 변화를 이해하는 것이 매우 중요하다는 것을 의미한다. 본 연구에서는 $Ga_2O_3:In_2O_3$:ZnO의 비율이 각각 1:1:1, 2:2:1, 3:2:1 그리고 4:2:1인 시료를 $Ne^+$이온을 이용하여 sputtering하면서 표면에 민감한 분광분석 기법인 x-ray photoelectron spectroscopy와 x-ray absorption spectroscopy를 이용하여 분광정보의 변화들을 연구하였다. 실험에 의하면, Ga 3d의 양에 비해서 In 4d, Zn 3d의 양은 sputtering 시간에 따라서 각 각 양이 줄어들었으며, 전체적으로 보다 산화가가 높은 경향을 보였으며, valence band maximum 근처에 subgap state를 형성하는 것을 관찰하였다. 또한 sputtering을 계속하는 경우 In 3d, In 4d, 및 Fermi energy 근처에 metallic state가 형성되는 것을 관찰하였다. 이러한 subgap state와 metallic state의 관측은 각기 sputtering에 따라서, 아직 명확하지는 않지만, surface state의 형성 및/혹은 oxygen interstitial의 형성 그리고 metallic In의 형성 및/혹은 oxygen defect의 형성이 이루어지는 것을 의미한다.

  • PDF

Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts

  • Kim, Dave Dae-Wook;Hennigan, Daniel John;Beavers, Kevin Daniel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • Polymer composite materials offer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet) in length. In order to construct even larger hull structures, higher quality composites with lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic (GFRP) composites is presented. Fabrication techniques investigated during this study are hand lay-up (HL), vacuum infusion (VI), and hybrid (HL+VI) processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented dining composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results.

Nanoscale Probing of Switching Behaviors of Pt Nanodisk on STO Substrates with Conductive Atomic Force Microscopy

  • Lee, Hyunsoo;Kim, Haeri;Van, Trong Nghia;Kim, Dong Wook;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.597-597
    • /
    • 2013
  • The resistive switching behaviors of Pt nanodisk on Nb-doped SrTiO3 single-crystal have been studied with conductive atomic force microscopy in ultra-high vacuum. The nanometer sizes of Pt disks were formed by using self-assembled patterns of silica nanospheres on Nb-doped SrTiO3 single-crystal semiconductor film using the Langmuir-Blodgett, followed by the metal deposition with e-beam evaporation. The conductance images shows the spatial mapping of the current flowing from the TiN coated AFM probe to Pt nanodisk surface on Nb:STO single-crystal substrate, that was simultaneously obtained with topography. The bipolar resistive switching behaviors of Pt nanodisk on Nb:STO single-crystal junctions was observed. By measuring the current-voltage spectroscopy after the forming process, we found that switching behavior depends on the charging and discharging of interface trap state that exhibit the high resistive state (HRS) and low resistive state (LRS), respectively. The results suggest that the bipolar resistive switching of Pt/Nb:STO single-crystal junctions can be performed without the electrochemical redox reaction between tip and sample with the potential application of nanometer scale resistive switching devices.

  • PDF

Development of a micro-scale Y-Zr-O oxide-dispersion-strengthened steel fabricated via vacuum induction melting and electro-slag remelting

  • Qiu, Guoxing;Zhan, Dongping;Li, Changsheng;Qi, Min;Jiang, Zhouhua;Zhang, Huishu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1589-1595
    • /
    • 2019
  • In this paper, the CLAM steel strengthened by micro-scale Y-Zr-O was prepared by vacuum induction melting followed by electroslag remelting (VIM-ESR). Yttrium (Y) and zirconium (Zr) were easy to aggregates into massive yttrium-zirconium-rich inclusions in the steel melted by vacuum induction melting (VIM), which would interrupt the continuity of the matrix and reduce the mechanical properties of steel. Micron-sized Y-Zr-O inclusions would be produced with the removal of original blocky Y-Zr-rich inclusions and the submicron-sized inclusions smaller than $0.2{\mu}m$ could be retained in the steel. The small grain size and the better refinement and distribution uniformity of Y-Zr-O inclusions after remelting would be responsible for the better yield strength and toughness. For VIM-ESR alloy, the ultimate tensile strength is 749 MPa and the yield strength is 642 MPa at room temperature, meanwhile they are 391 MPa and 367 MPa at $600^{\circ}C$, respectively. Meanwhile, the ductile-brittle transition temperature (DBTT) reduced from $-43^{\circ}C$ (VIM) to $-76^{\circ}C$ (VIM-ESR).