• Title/Summary/Keyword: vacuum process

Search Result 2,247, Processing Time 0.03 seconds

Modelling of Optimum Design of High Vacuum System for Plasma Process

  • Kim, Hyung-Taek
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.159-165
    • /
    • 2021
  • Electronic devices used in the mobile environments fabricated under the plasma conditions in high vacuum system. Especially for the development of advanced electronic devices, high quality plasma as the process conditions are required. For this purpose, the variable conductance throttle valves for controllable plasma employed to the high vacuum system. In this study, we analyzed the effects of throttle valve applications on vacuum characteristics simulated to obtain the optimum design modelling for plasma conditions of high vacuum system. We used commercial simulator of vacuum system, VacSim(multi) on this study. Reliability of simulator verified by simulation of the commercially available models of high vacuum system. Simulated vacuum characteristics of the proposed modelling agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve schematized as the modelling of throttle valve for the constant process-pressure of below 10-3 torr. Simulation results plotted as pump down curve of chamber, variable valve conductance and conductance logic of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably in plasma process.

The Effects of Vacuum-Molding Process Conditions on the Fluidity of A356 Alloy (A365 알루미늄합금의 유동도에 미치는 진공흡입조형 조건의 영향)

  • Oh, Young-Jin;Kim, Eun-Sik;Kim, Myung-Han;Hong, Young-Myung
    • Journal of Korea Foundry Society
    • /
    • v.25 no.4
    • /
    • pp.173-178
    • /
    • 2005
  • The vacuum molding process is one of the clean-foundry molding-processes that can recycle molding sands repeatedly, because molding can be accomplished by introducing vacuum only among dry molding sands in flask. The effects of molding conditions such as sand grain fineness, vacuum pressure and coating thickness on the fluidity of A356 Al alloy were studied and the results was obtained that the fluidity length was decreased as the sand grain fineness number and coating thikness were decreased and the vacuum pressure was increased. A large amount of heat removal from the molten metal resulting from the vacuum suction during the vacuum molding process was the principal cause of this decrease in fluidity.

Deburring Technology of Vacuum Plate for MLCC Lamination Using Magnetic Abrasive Polishing and ELID Process (MLCC 적층용 진공척의 자기연마와 ELID연삭을 이용한 미세버 제거 기술)

  • Lee, Yong-Chul;Shin, Gun-Hwi;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.149-154
    • /
    • 2015
  • This study has focused on the deburring technology of a vacuum plate for MLCC lamination using electrolytic in-process dressing (ELID) grinding, and the magnetic-assisted polishing (MAP) process. The surface of the vacuum plate has many micro-holes for vacuum suction. They are easily blocked by the burrs created in the surface-flattening process, such as the conventional grinding process. In this study, the MAP process, the ELID grinding process, and an ultrasonic vibration table are examined to remove the micro-burrs that lead to the blockage of the holes. In the results of the experiments, the MAP process and ELID grinding technology showed significant improvements of surface roughness and deburring performance.

The Vacuum In-Line Sealing Process for High Efficiency PDP (고효율 PDP 제작을 위한 진공 인라인 실장 공정)

  • Kwon, Sang-Jik;Jang, ChAn-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.3 s.12
    • /
    • pp.23-27
    • /
    • 2005
  • The effects of the base vacuum level on a plasma display panel (PDP) produced by the vacuum in-line sealing technology were investigated. The main equipment of the vacuum in-line sealing process consists of the sealing chamber, pumping systems for evacuating, mass flow controller for introducing the plasma gases, and other measuring systems. During the sealing process, the impurity gases were fully evacuated and the panel was prevented from the adsorption of impurity gases. As a result, the brightness increased as the impurity gas density decreased, so we found that the vacuum in-line sealing process was more efficient technology an the conventional sealing process.

  • PDF

Oxidative Etching of Imprinted Nanopatterns by Combination of Vacuum Annealing and Plasma Treatment

  • Park, Dae Keun;Kang, Aeyeon;Jeong, Mira;Lee, Jae-Jong;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.251.1-251.1
    • /
    • 2013
  • Combination of oxidative vacuum annealing and oxygen plasma treatment can serve as a simple and efficient method of line-width modification of imprinted nanopatterns. Since the vacuum annealing and oxygen plasma could lead mass loss of polymeric materials, either one of the process can yield a narrowed patterns. However, the vacuum annealing process usually demands quite high temperatures (${\geq}300^{\circ}C$) and extended annealing time to get appreciable line-width reduction. Although the plasma treatment may be considered as an effective low temperature rapid process for the line-width reduction, it is also suffering for the lowered controllability on application to very fine patterns. We have found that the vacuum annealing temperature can be lowered by introducing the oxygen in the vacuum process and that the combination of oxygen plasma treatment with the vacuum annealing could yield the best result in the line-with reduction of the imprinted polymeric nanopatterns. Well-defined line width reduction by more than 50% was successfully demonstrated at relatively low temperatures. Furthermore, it was verified that this process was applicable to the nanopatterns of different shapes and materials.

  • PDF

Development of Dry-Vacuum-Pump for Semiconductor/Display Process (반도체/디스플레이 공정급 건식진공펌프 개발 개요)

  • Lee, S.Y.;Noh, M.;Kim, B.O.;Lee, A.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.265-274
    • /
    • 2010
  • The excellent performance and stability of dry-vacuum-pump is essential to create and maintain high quality vacuum condition in semiconductor and display process. The development of dry-vacuum-pump needs systematic consideration for target application as well as delicate mechanical issues. Here, we introduce a development procedures of dry-vacuum-pump for semiconductor-process-class.

Development of Magnesium Seat Frames using the Vacuum Die Casting Process (진공 다이캐스팅 공정을 이용한 마그네슘 합금 시트프레임의 개발)

  • Shin, Hyun-Woo;Han, Beom-Suk;Yoo, Hyung-Jo;Jung, Hyun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.88-97
    • /
    • 2009
  • The vacuum die casting techniques can diminish the porosity of products and provide better surface appearance by the ordinary high pressure die casting process. The vacuum system can also reduce the cold laps in the die casting process and minimize the overflow pockets of the die. The vacuum system does not need high pressures to die cast compared to the ordinary die casting process, and so enables die casting of large parts for a given machine size. Parts made by the vacuum system have higher strength and more elongation than parts made by the ordinary die casting systems. In this paper, we designed and produced the Magnesium seat frames using the vacuum die casting processes. The new Magnesium seat frame was designed to satisfy safety regulations. Some safety test procedures of the seat frame were simulated by the finite element method. We obtained 10% weight reduction by design modification of seat frames compared to the current model. Flow simulations were carried out to minimize the trial and error in producing the parts. The die casted parts using vacuum systems resulted in better mechanical characteristics and no defects compared to those without vacuum systems.

Electrical and Optical Characteristics of Plasma Display Panel Fabricated by Vacuum In-line Sealing (진공 인라인 실장에 의해 제작된 플라즈마 디스플레이 패널의 전기적ㆍ광학적 특성)

  • Park, Sung-Hyun;Lee, Neung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.344-349
    • /
    • 2005
  • The optical and electrical characteristics of plasma display panel(PDP) using the vacuum in-line sealing technology compared with the conventional sealing process in this research. This PDP consisted of MgO protecting layer by e-beam evaporation and battier rib, transparent dielectric layer, dielectric layer, and electrodes by screen printer and then sealed off on Ne-Xe(4 %) 400 Torr and 430。C. The brightness and luminous efficiency were good as the base vacuum level was higher, and it was to check the advantage of high vacuum level sealing, one of the strong points of the vacuum in-line sealing process. However, the brightness and luminous efficiency was dropped sharply because of a crack on MgO protecting layer by the difference of the expansion and contraction stress on high temperature in the vacuum states between MgO and substrate. Fortunately, the crack was prevented by MgO was deposited on higher temperature than 300。C. Finally, the PDP, was fabricated by the vacuum in-line sealing process, resulted the lower brightness than processing only the thermal annealing treatment in the vacuum chamber, but the luminous efficiency was increased by the reducing power consumption with the decreasing luminous current. The vacuum in-line sealing technology was not to need the additional thermal annealing process and could reduce the fabrication process and bring the excellent optical and electrical properties without the crack of MgO protecting layer than the conventional sealing process.

Study on Optimization of the Vacuum Evaporation Process for OLED (Organic Electro-luminescent Emitting Display) (유기EL 디스플레이의 진공 성막 공정의 최적화에 관한 연구)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • In OLED vacuum evaporation process, the essential requirements include good uniformity of the film thickness over a glass substrate. And, it is commercially significant to improve the consuming efficiency of material of the evaporant which is deposited on the substrate because of high price of organic materials. In this paper, to achieve the better thickness uniformity and the better organic material consuming rate, a process optimization algorithm was developed by understanding vacuum evaporation process parameters that affect the material consuming efficiency and the uniformity of film thickness. Based on the method developed in this study, the vacuum evaporation process of OLED was successfully controlled. The developed method allowed the manufacture of high quality OLED displays with cheaper fabrication cost.

  • PDF

Nano Patterning Functional Polymers Using Nano-imprint Technique

  • Gwon, Hyeon-Geun;Lee, Gyu-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.430.2-430.2
    • /
    • 2014
  • Previous studies to enhance optical properties of opto-electronic devices involve patterning of inorganic materials. Patterning of inorganic material usually encompasses vacuum process that hinders productivity and increases cost. In this research, we successfully formed nano patterns with polymer matrix and fabricated photonic crystals. This process is anticipated to increase the performance of opto-electronic devices without any vacuum process. Moreover, nano imprint technology reduces cost and bolsters productivity.

  • PDF