• Title/Summary/Keyword: vacuum molding process

Search Result 83, Processing Time 0.028 seconds

Experimental Study of the Microvoids formation and Transport in the Vacuum Assisted Resin Transfer Molding Process (Vacuum Assisted Resin Transfer Molding 공정에서의 Microvoids 형성과 이동에 관한 연구)

  • Se Won Eun;Woo Il Lee
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.10-15
    • /
    • 2003
  • In RTM process, the content of microvoids can be critical due to the fact that the presence of microvoids degrades mechanical properties on the fabricated composite parts. The present paper proposes an experimental method of observation in void formation and transport. VARTM processes are performed under observation with a digital video camera and then the microvoid formation in the flow front and transport are videotaped and observed both in channels and tows. The obtained data are used in the mathematical model in order to determine the model constants. Experimental results and expected results from the mathematical model show a good agreement with each other.

A study on the thickness distribution and pattern deformation of films in vacuum-assisted thermoforming (열진공성형에서 발생하는 필름의 두께 분포와 패턴 변형에 관한 연구)

  • Seong, Gyeom-Son;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.5-10
    • /
    • 2018
  • Vacuum-assisted thermoforming is one of the critical steps for successful application of film insert molding(FIM) to parts of complex shape. In this study, the simulations and experiments of thermoforming processes were performed to investigate the effects of process conditions on thickness distribution and printed pattern deformation of films in vacuum-assisted thermoforming. The film thickness uniformity increased with decreasing film heating time, whereas it increased with increasing vacuum delay time. After thermoforming of films with uniform pattern space of 5mm, the maximum space was 9.432mm. Based on the simulation, a modified pattern was calculated to obtain uniform spaces after thermoforming. In the experiments for film with the modified pattern, the maximum space appeared 5.837mm. In, addition. the predicted patterns were in good agreement with the experimental results.

Evaluation of Physical and Mechanical Properties based on Liquid Composite Molding (액상성형공정별 물리적/기계적 특성 비교 평가)

  • Park, Dong-Cheol;Kim, Tai-Gon;Kim, Seung-Hyeok;Shin, Do-Hoon;Kim, Hyeon-Woo;Han, Joong-won
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.304-310
    • /
    • 2018
  • Autoclave process has been remaining as one of the most robust and stable process in fabricating structural composite part of aerospace industry. It has lots of advantages, however exhibits some disadvantages or limitations in capital investment and operation. Recently, there have been various Out-of-Autoclave process being researched and developed to overcome those limitations. In this study, laminate specimens were fabricated using LCM (Liquid Composite Molding) process, regarded as one of potential OoA process. DB (Double bagging), CAPRI (Controlled Atmospheric Pressure Resin Infusion), VAP (Vacuum Assisted Process) and Autoclave process were used for laminate specimens. Void content, Thickness, Tg (Glass Transition Temperature), ILSS (Interlaminar Shear Strength) and Flexural strength properties were evaluated for comparison. It is verified that Autoclave based specimen has uniform thickness distribution, the lowest void content and outstanding mechanical properties. And, CAPRI based specimen exhibits relatively good physical and mechanical properties over DB and VAP based specimen and comparable mechanical properties with autoclave based specimen.

COUPLED ANALYSIS OF INJECTION MOLDING AND FILM FORMING FOR IDENTIFYING FILM DEFORMATION IN IMD PROCESS (IMD 공정 중 필름 변형 특성 파악을 위한 사출 및 필름성형 간 연계해석)

  • Yoon, J.H.;Hur, N.;Bae, A.H.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.20-25
    • /
    • 2013
  • In various manufacturing industries, an in-mold decoration (IMD) process for plastic objects is widely utilized because a film forming and an injection molding processes run simultaneously. In the present study, the deformation of polymer film and filling of resin in the IMD process were numerically investigated to evaluate the quality of the plastic object formed by the IMD process, which consists of thermoforming and injection molding processes. To obtain the initial shape of the polymer film during the injection molding process, the deformation of the polymer film in the thermoforming process was pre-formed using the vacuum conditions to attach the film to a cavity. Since the properties and deformation of polymer film are greatly affected by the behavior of polymer resin being injected into a mold cavity, numerical simulations for the injection molding and film forming were performed with one-way coupling method. The results showed that the injected resin could lead to the tearing of the polymer film in local regions near the corners. In order to verify the proposed numerical methodology, the numerical results of the deformation patterns printed on the initial polymer film were compared with the experimental data. The proposed methodology to couple film forming analysis with injection molding analysis can be used to predict the deformation of film in IMD process.

Film Insert Molding of Automotive Door Grip Using Injection-Compression Molding (사출압축성형을 이용한 자동차용 도어그립 필름인서트성형)

  • Lee, Ho Sang;Yoo, Young Gil;Kim, Tae An
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.771-777
    • /
    • 2014
  • Injection-compression molding was used for film insert molding of an automotive door grip using films with three-dimensional embossed patterns. A vacuum mold was fabricated for vacuum-assisted thermoforming of the film, and an injection-compression mold was developed for film insert molding. Three pressure transducers were installed inside the mold cavity to measure cavity pressures. Injection-compression molding experiments under various compression strokes and toggle speeds were performed to investigate their effects on the cavity pressure and heights of the embossed patterns. The compression stroke of 0.9mm and low toggle speed resulted in a higher degree of conservation of embossed patterns. Additionally, the processing conditions for the maximum heights of embossed patterns were almost similar to those for minimum integral value of cavity pressures. The injection-compression molding process presents the opportunity to impart a soft-touch feeling of plastic parts printed with embossed patterns.

A Study on the Measurement System Design for the Resin Flow and Curing in the Vacuum Assisted Resin Transfer Molding(VARTM) Process Using the Long Period Fiber Bragg Grating (삽입된 장주기 광섬유 격자를 이용한 VARTM 공정에서의 수지이동 및 변형 과정 예측 시스템 설계에 관한 연구)

  • Yoon, Young-Ki;Chung, Seung-Hwan;Lee, Woo-Il;Lee, Byoung-Ho;Byun, Joon-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.489-494
    • /
    • 2004
  • Long Period Gratings (LPG) is currently receiving considerable attention because of their consistent measuring results fur pressure, temperature, strain and flow. LPG is easier to prepare and has a high sensitivity compared with Fiber Bragg Gratings (FBG). In addition, this kind of optical fiber sensors could be used for implementations in various structures. In this paper, LPG was used to monitor in situ the resin flow and the curing process in VARTM (Vacuum Assisted Resin Transfer. Molding). In order to demonstrate the effectiveness of the method, FBG is inserted into the glass mat to monitor the resin flow using optical spectrum analyzer (OSA). The curing reactions in VARTM are also observed using the same method. From the results, the attenuation wavelength shift and the loss change of attenuation band can be obtained from the status of the RTM (Resin Transfer Molding) sample owing to the internal variations of the .effective index, temperature, and pressure. It is shown that the proposed LPG is more effective in monitoring the curing reaction than FBG.

The present state and developing trend of the vacuum/automatic pressure gelating resin-casting technology for electric applications (전기산업분야에서 이용되고 있는 진공/자동가압 겔화 수지-주형기술의 현황과 개발동향)

  • 왕종배;정일형;김재환
    • Electrical & Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.64-72
    • /
    • 1994
  • 본 고는 현재 전기적 응용을 위한 수지 절연물의 진공/가압 수지-주형처리 분야에서 가장 앞선 기술과 연구개발력을 보유하고 있는 스위스의 Ciba-Geigy사와 최신의 진공성형 시스템을 개발, 생산하고 있는 독일의 Hedrich사 및 진공주형/자동가압 성형장비를 생산하는 스위스의 Vogel사 등을 최근에 방문하여 Epoxy, Polyurethane, Polyester 및 Silicone 수지 등의 수지절연시스템을 가지고 구조적으로 기포가 없으며 전기적, 기계적, 열적특성이 매우 우수하고 매끄러운 표면이 요구되는 수지 mold제품을 생산하는데 적용되고 있는 진공 수지-주형처리기술의 현황과 아울러 경화시간을 크게 단축시켜 생산자동화가 가능한 최신의 자동가압겔화(Automatic pressure gelation)/주입몰드공정(Injection molding process)의 특징 및 기술개발현황에 대해 파악한 내용을 소개하고자 한다.

  • PDF

Direct printing of organic single crystal nanowire arrays by using Liquid-bridge-mediated nanotransfer molding

  • Oh, Hyun-S.;Baek, Jang-Mi;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.473-473
    • /
    • 2011
  • In recent years, organic thin film transistors OTFTs based on conductive-conjugated molecules have received significant attention. We report a fabrication of organic single crystal nanowires that made on Si substrates by liquid bridge-mediated nanotransfer molding (LB-nTM) with polyurethane acrylate (PUA) mold. LB-nTM is based on the direct transfer of various materials from a stamp to a substrate via a liquid bridge between them. In liquid bridge-transfer process, the liquid layer serves as an adhesion layer to provide good conformal contact and form covalent bonding between the organic single crystal nanowire and the Si substrate. Pentacene is the most promising organic semiconductors. However pentacene has insolubility in organic solvents so pentacene OTFTs can be achieved with vacuum evaporation system. However 6, 13-bis (triisopropylsilylethynyl) (TIPS) pentacene has high solubility in organic solvent that reported by Anthony et al. Furthermore, the substituted rings in TIPS-pentacene interrupt the herringbone packing, which leads to cofacial ${\pi}-{\pi}$ stacking. The patterned TIPS-Pentacene single crystal nanowires have been investigated by Atomic force microscopy (AFM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and electrical properties.

  • PDF

Fabrication Process of a Nano-precision Polydimethylsiloxane Replica using Vacuum Pressure-Difference Technique (진공 압력차이법에 의한 나노 정밀도를 가지는 폴리디메틸실록산 형상복제)

  • 박상후;임태우;양동열;공홍진;이광섭
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.305-313
    • /
    • 2004
  • A vacuum pressure-difference technique for making a nano-precision replica is investigated for various applications. Master patterns for replication were fabricated using a nano-replication printing (nRP) process. In the nRP process, any picture and pattern can be replicated from a bitmap figure file in the range of several micrometers with resolution of 200nm. A liquid-state monomer is solidified by two-photon absorption (TPA) induced by a femto-second laser according to a voxel matrix scanning. After polymerization, the remaining monomers were removed simply by using ethanol droplets. And then, a gold metal layer of about 30nm thickness was deposited on the fabricated master patterns prior to polydimethylsiloxane molding for preventing bonding between the master and the polydimethylsiloxane mold. A few gold particles attached on the polydimethylsiloxane stamp during detaching process were removed by a gold selecting etchant. After fabricating the polydimethylsiloxane mold, a nano-precision polydimethylsiloxane replica was reproduced. More precise replica was produced by the vacuum pressure-difference technique that is proposed in this paper. Through this study, direct patterning on a glass plate, replicating a polydimethylsiloxane mold, and reproducing polydimethylsiloxane replica are demonstrated with a vacuum pressure-difference technique for various micro/nano-applications.

Risering of Steel Castings in Vacuum Molding Process (진공흡입주형 주조법에서 주강의 압탕 방안 설계)

  • Kang, Bok-Hyun;Kim, Ki-Young;Kim, Myung-Han;Hong, Young-Myung
    • Journal of Korea Foundry Society
    • /
    • v.27 no.2
    • /
    • pp.88-94
    • /
    • 2007
  • General criteria for the risering design of steel castings and commercial codes for the flow and solidification analysis were used to design the optimized risering in V-process. Three type of specimens were chosen including thin plates and a thick disc. Sided riser installed in the front of a plate casting was effective to prevent the shrinkage defects and to increase the casting yield ratio. Exothennic sleeve and chill were also effective. It was possible to apply the general criteria for the risering design of steel castings to V-process. Temperature of a mold surface was expected to rise over $1,000^{\circ}C$ in the temperature calculation considering radiation effect of molten metal in the mold. Since weakening temperature of the vinyl used in V-process is about $70^{\circ}C$, it should be emphasized that a proper coating of the vinyl film is necessary to prevent the possibility of burning out of the vinyl by the molten metal.