• 제목/요약/키워드: vaccine efficacy

검색결과 242건 처리시간 0.05초

Generation and Immunity Testing of a Recombinant Adenovirus Expressing NcSRS2-NcGRA7 Fusion Protein of Bovine Neospora caninum

  • Jia, Li-Jun;Zhang, Shou-Fa;Qian, Nian-Chao;Xuan, Xue-Nan;Yu, Long-Zheng;Zhang, Xue-Mei;Liu, Ming-Ming
    • Parasites, Hosts and Diseases
    • /
    • 제51권2호
    • /
    • pp.247-253
    • /
    • 2013
  • Neospora caninum is the etiologic agent of bovine neosporosis, which affects the reproductive performance of cattle worldwide. The transmembrane protein, NcSRS2, and dense-granule protein, NcGRA7, were identified as protective antigens based on their ability to induce significant protective immune responses in murine neosporosis models. In the current study, NcSRS2 and NcGRA7 genes were spliced by overlap-extension PCR in a recombinant adenovirus termed Ad5-NcSRS2-NcGRA 7, expressing the NcSRS2-NcGRA7 gene, and the efficacy was evaluated in mice. The results showed that the titer of the recombinant adenovirus was $10^9TCID_{50}/ml$. Three weeks post-boost immunization (w.p.b.i.), the IgG antibody titer in sera was as high as 1:4,096. IFN-${\gamma}$ and IL-4 levels were significantly different from the control group (P<0.01). This research established a solid foundation for the development of a recombinant adenovirus vaccine against bovine N. caninum.

인삼 지상부를 첨가한 사료 급여가 닭에서 나타내는 효과 (Efficacy of orally administered ginseng stem and leaf in chickens)

  • 박소연;이광열;조영재;박보경;김기주;이나래;김동건;김영희;한태욱
    • 대한수의학회지
    • /
    • 제55권1호
    • /
    • pp.1-7
    • /
    • 2015
  • Ginseng has been widely used in Korea as a natural medicine due to its saponin contents. Although the total amount of ginseng stem and leaf saponins (GSLS) is 4~5 times higher than that of saponin in the root, the root is mainly used. This is due to two reasons: nervous system-stimulant activity of GSLS and pesticide residues in GSLS. In this study, residual agricultural pesticides were removed from GSLS using two types of bacterial treatments. Two GSLS treatment groups of chickens (GSLS-1 and GSLS-2) were established. The chickens were fed 0.4% GSLS-1 or GSLS-2 mixed with crop. We then evaluated the effects of GSLS on bodyweight and several immune parameters. At the end of the experiments, chickens fed GSLS-1 and red ginseng saponin had significantly higher growth rates (16.6% and 8.0%, respectively) compared to the vaccine control group treated with Noblis Salenvac-T. The group fed GSLS-1 also had the highest IgG titer that was significantly different at the end of experiments compared to the other groups. These findings imply that GSLS-1 is a good candidate feed additive for the chicken industry.

Removal and Inactivation of Human Immunodeficiency Virus(HIV-1) by Cold Ethanol Fractionation and Pasteurization during the Manufacturing of Albumin and Immunoglobulins from Human Plasma

  • Kim, In-Seop;Eo, Ho-Gueon;Park, Chan-Woo;Chong E. Chang;Lee, Soungmin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권1호
    • /
    • pp.25-30
    • /
    • 2001
  • Viral safety is a prerequisite for manufacturing clinical albumin and immunoglobulins from human plasma pools. This study was designed to evaluate the efficacy of cold ethanol fractionation and pasteurization (60$\^{C}$ heat treatment for 10h) for the removal/inactivation of human immunodeficiency virus type 1 (HIV-1) during the manufacturing of albumin and immunoglobulins. Samples from the relevant stages of the production process were spiked with HIV-1, and the amount of virus in each fraction was quantified by the 50% tissue culture infectious dose(TCID(sub)50). Both fraction IV fractionation and pasteurization steps during albumin processing were robust and effective in inactivating HIV-1, titers of which were reduced from an initial 8.5 log(sub)10 TCID(sub)50 to undetectable levels. The log reduction factors achieved were $\geq$ 4.5 and $\geq$ 6.5, respectively. In addition, fraction III fractionation and pasteurization during immunoglobulins processing were robust and effective in eliminating HIV-1. HIV-1 titers were reduced from an initial 7.3 log(sub)10 TCID(sub)50 to undetectable levels. The log reduction factors achieved in this case were $\geq$ 4.9 and $\geq$ 5.3, respectively. These results indicate that the process investigated for the production of albumin and immunoglobulins have sufficient HIV-1 reducing capacity to achieve a high margin of safety.

  • PDF

Glycoproteins isolated from Atractylodes macrocephala Koidz improve protective immune response induction in a mouse model

  • Kim, Kyoung-A.;Son, Young-Ok;Kim, So-Soon;Jang, Yong-Suk;Baek, Young-Hyun;Kim, Chun-Chu;Lee, Jeong-Hoon;Lee, Jeong-Chae
    • Food Science and Biotechnology
    • /
    • 제27권6호
    • /
    • pp.1823-1831
    • /
    • 2018
  • This study examined the efficacy of Atractylodes macrocephala Koidz (AMK) protein and polysaccharide extracts as adjuvant or adjuvant booster when given together with porcine pleuropneumonia vaccine. Experimental mice (n = 5/group) were subcutaneously immunized with $25{\mu}g$ ApxIIA #3 antigen, a target protein against A. pleuropneumoniae, together with alum and/or various concentrations ($0-500{\mu}g$) of the AMK extracts, while the control group received PBS only. Immunization with ApxIIA #3 antigen increased the antigen-specific IgG titer and this increase was enhanced in the immunization together with AMK protein, but not polysaccharide extract. Supplementation of AMK protein extract exhibited dose-dependent increases in the antigen-induced protective immunity against A. pleuropneumoniae challenge and in the lymphocyte proliferation specific to the antigen. Glycoproteins present in the AMK extract were the active components responsible for immune response induction. Collectively, the present findings suggest that AMK glycoproteins are useful as immune stimulating adjuvant or adjuvant booster.

직장인의 건강신념이 COVID-19 예방접종 이행의도에 미치는 요인 (Factors affecting the Intention to get COVID-19 Vaccine according to Employee's Health Beliefs)

  • 김유미;정세영;이근출;김병권
    • 농촌의학ㆍ지역보건
    • /
    • 제46권4호
    • /
    • pp.207-217
    • /
    • 2021
  • Objectives: The purpose of this study was to investigate the factors in which employee's health beliefs affect their intention to get COVID-19 vaccines. Methods: The participants of this survey were 237 emlpoyees living in Busan. Data were collected using structured online questionnaires from April 26th to May 6th, 2021. The data were analyzed in SPSS WIN version 25.0 using descriptive statistics, t-test, chi-square test, multiple logistic regression analysis. Results: At the average score for each area of health beliefs regarding COVID-19, self-efficacy was 4.45 points, perceived sensitivity 4.71 points, perceived severity 3.59 points, perceived benefit 4.46 points, and perceived disability 2.19 points. Monthly income, perceived sensitivity, perceived severity, and perceived benefit were found to be factors affecting the intention to get COVID-19 vaccines. Conclusions: In order to improve the vaccination intention of COVID-19, it is necessary for subjects to recognize the seriousness of the disease, increase their sensitivity to the disease, and actively promote and educate the community about the benefits of vaccination.

Oral Administration of Poly-Gamma-Glutamic Acid Significantly Enhances the Antitumor Effect of HPV16 E7-Expressing Lactobacillus casei in a TC-1 Mouse Model

  • Kim, Eunjin;Yang, Jihyun;Sung, Moon-Hee;Poo, Haryoung
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권9호
    • /
    • pp.1444-1452
    • /
    • 2019
  • The conventional prophylactic vaccines for human papillomavirus (HPV) efficiently prevent infection with high-risk HPV types, but they do not promote therapeutic effects against cervical cancer. Previously, we developed HPV16 E7-expressing Lactobacillus casei (L. casei-E7) as a therapeutic vaccine candidate for cervical cancer, which induces antitumor therapeutic effects in a TC-1 murine cancer model. To improve the therapeutic effect of L. casei-E7, we performed co-treatment with poly-gamma-glutamic acid (${\gamma}-PGA$), a safe and edible biomaterial naturally secreted by Bacillus subtilis. We investigated their synergistic effect to improve antitumor efficacy in a murine cancer model. The treatment with ${\gamma}-PGA$ did not show in vitro cytotoxicity against TC-1 tumor cells; however, an enhanced innate immune response including activation of dendritic cells was observed. Mice co-administered with ${\gamma}-PGA$ and L. casei-E7 showed significantly suppressed growth of TC-1 tumor cells and an increased survival rate in TC-1 mouse models compared to those of mice vaccinated with L. casei-E7 alone. The administration of ${\gamma}-PGA$ markedly enhanced the activation of natural killer (NK) cells but did not increase the E7-specific cytolytic activity of $CD8^+$ T lymphocytes in mice vaccinated with L. casei-E7. Overall, our results suggest that oral administration of ${\gamma}-PGA$ induces a synergistic antitumor effect in combination with L. casei-E7.

Comparison of Immune Responses to the PCV2 Replicase-Capsid and Capsid Virus-Like Particle Vaccines in Mice

  • Jung, Bo-Kyoung;Kim, Hye-Ran;Lee, Young-Hyeon;Jang, Hyun;Chang, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권3호
    • /
    • pp.482-488
    • /
    • 2019
  • Porcine circovirus type 2 (PCV2) is the causative agent of postweaning multisystemic wasting syndrome (PMWS) in pigs. Replicase (Rep) proteins are considered essential for viral replication. Capsid (Cap) protein is the primary immunogenic protein that induces protective immunity. Little is known about comparison on the immunogenicity of PCV2 Rep and Cap fusion protein and Cap protein. In the present study, recombinant baculoviruses expressing the Rep-Cap fusion protein (Bac-Rep-Cap) and the Cap protein (Bac-Cap) of PCV2 were constructed and confirmed with western blot and indirect fluorescence assay. Immunogenicities of the two recombinant proteins were tested in mice. The titers of antibodies were determined with a PCV2-specific enzyme-linked immunosorbent assay (ELISA) and a serum neutralization assay. The $IFN-{\gamma}$ response of immunized mice was measured by ELISA. The mice immunized with the Bac-Rep-Cap and Bac-Cap successfully produced Cap-specific immunoreaction. The mice immunized with the Bac-Cap developed higher PCV2-specific neutralizing antibody titers than mice injected with the Bac-Rep-Cap. $IFN-{\gamma}$ in the Bac-Rep-Cap group was increased compared to those in the Bac-Cap group. Vaccination of mice with the Bac-Rep-Cap showed significantly decreased protective efficacy compared to the Bac-Cap. Our findings will indubitably not only lead to a better understanding of the immunogenicity of PCV2, but also improved vaccines.

한탄바이러스 76-118을 이용한 치사 동물모델 확립 (Establishment of a Lethal Animal Model of Hantaan Virus 76-118 Infection)

  • 송영조;유치호;구세훈;허경행;정성태
    • 한국군사과학기술학회지
    • /
    • 제24권3호
    • /
    • pp.348-355
    • /
    • 2021
  • Hantaan virus(HTNV) causes hemorrhagic fever with renal syndrome(HFRS) with a case fatality rate ranging from <1 to 15 % in human. Hantavax is a vaccine against the Hantavirus, which has been conditionally approved by the Ministry of Food and Drug Safety(MFDS). However, only 50 % of volunteers had neutralizing antibodies 1 year following the boost. Effective antiviral treatments against HTNV infection are limited. Hantaviruses generally cause asymptomatic infection in adult mice. On the other hand, infection of suckling and newborn mice with hantaviruses causes lethal neurological diesease or persistant infection, which is different from the disease in humans. The development of vaccines and antiviral strategies for HTNV has been partly hampered by the lack of an efficient lethal mouse model to evaluate the efficacy of the candidate vaccines or antivirals. In this report, we established a lethal mouse model for HTNV, which may facilitate in vivo studies on the evaluation of candidate drugs against HTNV. The median lethal dose value of HTNV was calculated by probit analysis of deaths occurring within two weeks. Five groups of ten ICR mice were injected intracranially with serial 2-fold dilutions (from 50 to 3.125 PFU/head) of HTNV. Mice injected with HTNV began to die at 8 days post-infection. The lethal dose required to kill 50 % of the mice (LD50) was calculated to be 2.365 PFU/head.

Inactivated Vibrio cholerae Strains That Express TcpA via the toxT-139F Allele Induce Antibody Responses against TcpA

  • Eun Jin Kim;Jonghyun Bae;Young-Jun Ju;Do-Bin Ju;Donghyun Lee;Seonghyeon Son;Hunseok Choi;Thandavarayan Ramamurthy;Cheol-Heui Yun;Dong Wook Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권11호
    • /
    • pp.1396-1405
    • /
    • 2022
  • Cholera remains a major global public health problem, for which oral cholera vaccines (OCVs) being a valuable strategy. Patients, who have recovered from cholera, develop antibody responses against LPS, cholera toxin (CT), toxin-coregulated pilus (TCP) major subunit A (TcpA) and other antigens; thus, these responses are potentially important contributors to immunity against Vibrio cholerae infection. However, assessments of the efficacy of current OCVs, especially inactivated OCVs, have focused primarily on O-antigen-specific antibody responses, suggesting that more sophisticated strategies are required for inactivated OCVs to induce immune responses against TCP, CT, and other antigens. Previously, we have shown that the toxT-139F allele enables V. cholerae strains to produce CT and TCP under simple laboratory culture conditions. Thus, we hypothesized that V. cholerae strains that express TCP via the toxT-139F allele induce TCP-specific antibody responses. As anticipated, V. cholerae strains that expressed TCP through the toxT-139F allele elicited antibody responses against TCP when the inactivated bacteria were delivered via a mouse model. We have further developed TCP-expressing V. cholerae strains that have been used in inactivated OCVs and shown that they effect an antibody response against TcpA in vivo, suggesting that V. cholerae strains with the toxT-139F allele are excellent candidates for cholera vaccines.