• 제목/요약/키워드: vaccine development

검색결과 456건 처리시간 0.024초

HIV-1 Vaccine Development: Need For New Directions

  • Cho Michael W.
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2000년도 추계학술발표대회
    • /
    • pp.78-82
    • /
    • 2000
  • The AIDS epidemic continues unabated in many part of the world. After near two decades, no vaccine is available to combat the spread of this deadly disease. Much of the HIV -1 vaccine effort during the past decade has focused on the viral envelope glycoprotein, largely because it is the only protein that can elicit neutralizing antibodies (Nabs). Eliciting broadly cross-reactive Nabs has been a primary goal. The intrinsic genetic diversity of the viral envelope, however, has been one of the major impediments in vaccine development. We have recently completed a comprehensive study examining whether it is possible to elicit broadly acting Nabs by immunizing monkeys with mixtures of envelope proteins from multiple HIV -1 isolates. We compared the humoral immune responses elicited by vaccination with either single or multiple envelope proteins and evaluated the importance of humoral and non-humoral immune response in protection against a challenge virus with a homologous or heterologous envelope protein. Our results show that (1) Nab is the correlate of sterilizing immunity, (2) Nabs against primary HIV -1 isolates can be elicited by the live vector-prime/protein boost approach, and (3) polyvalent envelope vaccines elicit broader Nab response than monovalent vaccines. Nonetheless, our findings clearly indicate that the increased breadth of Nab response is by and large limited to strains included in the vaccine mixture and does not extend to heterologous non-vaccine strains. Our study strongly demonstrates how difficult it may be to elicit broadly reactive Nabs using envelope proteins and sadly predicts a similar fate for many of the vaccine candidates currently being evaluated in clinical trials. We have started to evaluate other vaccine candidates (e.g. genetically modified envelope proteins) that might elicit broadly reactive Nabs. We are also exploring other vaccine strategies to elicit potent cytotoxic T lymphocyte responses. Preliminary results from some of these experiments will be discussed.

  • PDF

Protective immunogenicity of the G protein of hirame rhabdovirus (HIRRV) in flounder using DNA vaccine

  • Seo, Ji-Yeon;Kim, Ki-Hong;Kim, Sung-Koo;Kim, Young-Tae;Park, Tae-Jin
    • 한국어업기술학회:학술대회논문집
    • /
    • 한국어업기술학회 2003년도 춘계 수산관련학회 공동학술대회발표요지집
    • /
    • pp.313-314
    • /
    • 2003
  • Antiviral DNA vaccine carrying a gene for a major antigenic viral protein have received considerable attention as a new approach in vaccine development. For fish viruses effects of DNA vaccine encoding viral G gene of infectious hematopoietic necrosis virus(IHNV) and viral hemorrhagic septicemia virus (VHSV)have been demonst.ated previously(Lapatra et al., 2001) Hirame rhabdovirus (HIRRV) causes hemorragic disease on flounder. (omitted)

  • PDF

Thrombosis and severe acute respiratory syndrome coronavirus 2 vaccines: vaccine-induced immune thrombotic thrombocytopenia

  • Park, Young Shil
    • Clinical and Experimental Pediatrics
    • /
    • 제64권8호
    • /
    • pp.400-405
    • /
    • 2021
  • The development of vaccines against severe acute respiratory syndrome coronavirus 2, which features high mortality and morbidity rates, has progressed at an unprecedented rate, and vaccines are currently in use worldwide. Thrombotic events after vaccination are accompanied by thrombocytopenia, and this issue was recently termed vaccine-induced immune thrombotic thrombocytopenia. This manuscript describes recently published guidelines and other related issues and demonstrates characteristic cases.

Development of inactivated Akabane and bovine ephemeral fever vaccine for cattle

  • Yang, Dong-Kun;Kim, Ha-Hyun;Jo, Hyun-Ye;Choi, Sung-Suk;Cho, In-Soo
    • 대한수의학회지
    • /
    • 제55권4호
    • /
    • pp.227-232
    • /
    • 2015
  • Akabane and bovine ephemeral fever (BEF) viruses cause vector-borne diseases. In this study, inactivated Akabane virus (AKAV)+Bovine ephemeral fever virus (BEFV) vaccines with or without recombinant vibrio flagellin (revibFlaB) protein were expressed in a baculovirus expression system to measure their safety and immunogenicity. Blood was collected from mice, guinea pigs, sows, and cattle that had been inoculated with the vaccine twice. Inactivated AKAV+BEFV vaccine induced high virus neutralizing antibody (VNA) titer against AKAV and BEFV in mice and guinea pigs. VNA titers against AKAV were higher in mice and guinea pigs immunized with the inactivated AKAV+BEFV vaccine than in animals inoculated with vaccine containing revibFlaB protein. Inactivated AKAV+BEFV vaccine elicited slightly higher VNA titers against AKAV and BEFV than the live AKAV and live BEFV vaccines in mice and guinea pigs. In addition, the inactivated AKAV+BEFV vaccine was safe, and induced high VNA titers, ranging from 1 : 64 to 1 : 512, against both AKAV and BEFV in sows and cattle. Moreover, there were no side effects observed in any treated animals. These results indicate that the inactivated AKAV+BEFV vaccine could be used in cattle with high immunogenicity and good safety.

Development of Serum Free Medium and Optimization of Porcine Rotavirus Vaccine Production

  • Ko, Yun-Mi;Kim, Myoung-Hwa;Kim, Min-Young;Jeong, Yeon-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.207-209
    • /
    • 2005
  • Serum is a potential source of bacterial, mycoplasmal and viral contamination, and it has a possibility of the introduction of serum proteins, prion and pyrogens into the final vaccine product. For porcine Rotavirus vaccine production, it is necessary to develop serum free medium which do not cause those problems. A new serum free medium was developed for porcine Rotavirus vaccine based on DMEM, and the performance of developed serum free medium was evaluated in terms of Vero cell growth and Rotavirus vaccine production. The cell density, gown in serum free medium developed, was similar with that in serum supplemented medium. Also, it was higher than that in other commercially available serum free medium. The productivity of Rotavirus vaccine using serum free medium developed and optimum production strategies will be also discussed.

  • PDF

구제역의 병리기전 및 진단, 예방백신 개발 (Pathogenesis, Dianosis, and Prophylactic Vaccine Development for Foot-and-Mouth Disease)

  • 문선화;양주성
    • Applied Biological Chemistry
    • /
    • 제48권4호
    • /
    • pp.301-310
    • /
    • 2005
  • 구제역(Foot-and-Mouth Disease: FMD)이란 소, 돼지, 양, 염소 등의 cloven-hoofed 동물에서 나타나는 바이러스성 질병으로 입, 코, 유두, 발굽 등에 수포가 형성되는 것이 특징이다. 일곱 가지 혈청형(O, A, C, Asia1, SAT1, SAT2 and SAT3)으로 분류되는 구제역바이러스(Foot-and-Mouth Disease Virus: FMDV)는 single stranded positive RNA virus로 nonenveloped capsid virus이다. Viral genome은 8.2 Kb로 하나의 ORF인 polyprotein으로 되어있으며, 크게 capsid protein coding region인 P1, replication related protein coding region인 P2, RNA dependent RNA polymerase coding region인 P3로 구성된다. FMDV는 respiratory tract의 pharynx epithelial cell에 감염되며, lung epithelial cell에서 replication을 한다. 구제역바이러스는 감염율은 높지만 낮은 치사율을 가진다. 2002년 한국에서 구제역이 발병하여 많은 경제적 손실을 입었다. FMDV의 감염을 조절할 수 있는 조절방법이 없는 실정이며, 현재 많은 나라에서는 구제역바이러스의 감염을 막을 수 있는 효과적인 방법을 연구하고 있다. 본 보고서에서는 FMD에 대한 보다 효과적인 예방법인 DNA vaccine, edible vaccine, peptide vaccine에 대해 고찰하였다.

An animal model using Eimeria live vaccine and to study coccidiosis protozoa pathogenesis

  • Lee, Hyun-A;Hong, Sunhwa;Choe, Ohmok;Kim, Okjin
    • 대한수의학회지
    • /
    • 제51권3호
    • /
    • pp.249-252
    • /
    • 2011
  • Cell culture systems for the protozoan Eimeria are not yet available. The present study was conducted to develop an animal model system by inoculating animals with a live Eimeria vaccine. This study was conducted on 3-day-old chickens (n = 20) pretreated with cyclophosphamide. The chickens were divided into 2 groups: the control group (n = 10) and the inoculated group that received the live Eimeria vaccine (n = 10). During the study period, we compared the clinical signs, changes in body weight, and number of oocysts shed in the feces of the control and inoculated group. This study showed that oocyst shedding was significantly higher in the chickens inoculated with live Eimeria oocysts than in the control chickens. Moreover, body weight gain was lesser in the animals in the inoculated group than in the control animals. Fecal oocyst shedding was observed in the inoculated animals. On the basis of these findings, we suggest that live Eimeria vaccination with cyclophosphamide pretreatment may be used to obtain an effective animal model for studying protozoan infections. This animal study model may eliminate the need for a tedious continuous animal inoculation process every 6 months because the live coccidiosis vaccine contains live oocysts.

계두예방약용(鷄痘豫防藥用) 계두독(鷄痘毒)과 구두독주(鳩痘毒株)의 비교연구(比較硏究) (Comparative Studies of Fowl and Pigeon pox Virus Strains for the Preparation of Fowl pox Vaccine)

  • 전윤성;김순재;정영석
    • 대한수의학회지
    • /
    • 제5권1호
    • /
    • pp.37-41
    • /
    • 1965
  • For the preparation of an effective fowl pox vaccine, comparative studies of a number of fowl and pigeon pox virus strains were accomplished, and the following conclusions were made. 1. Anyang-Nakano strain which was nation widely used as a seed virus of fowl pox vaccine was proven its inadequacy. 2. A liquid vaccine prepared with Minnesota strain of pigeon pox virus showed its stability for 6 months and on side reaction.

  • PDF

Current Trends in Cancer Vaccines - a Bioinformatics Perspective

  • Sankar, Shanju;Nayanar, Sangeetha K.;Balasubramanian, Satheesan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권7호
    • /
    • pp.4041-4047
    • /
    • 2013
  • Cancer vaccine development is in the process of becoming reality in future, due to successful phase II/III clinical trials. However, there are still problems due to the specificity of tumor antigens and weakness of tumor associated antigens in eliciting an effective immune response. Computational models to assess the vaccine efficacy have helped to improve and understand what is necessary for personalized treatment. Further research is needed to elucidate the mechanisms of activation of antigen specific cytotoxic T lymphocytes, decreased TREG number functionality and antigen cascade, so that overall improvement in vaccine efficacy and disease free survival can be attained. T cell epitomic based in sillico approaches might be very effective for the design and development of novel cancer vaccines.

Antigen Delivery Systems: Past, Present, and Future

  • Hyun-Jeong Ko;Yeon-Jeong Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권4호
    • /
    • pp.370-387
    • /
    • 2023
  • The COVID-19 pandemic has increased demand for safe and effective vaccines. Research to develop vaccines against diseases including Middle East respiratory syndrome, Ebolavirus, human immunodeficiency virus, and various cancers would also contribute to global well-being. For successful vaccine development, the advancement of technologies such as antigen (Ag) screening, Ag delivery systems and adjuvants, and manufacturing processes is essential. Ag delivery systems are required not only to deliver a sufficient amount of Ag for vaccination, but also to enhance immune response. In addition, Ag types and their delivery systems determine the manufacturing processes of the vaccine product. Here, we analyze the characteristics of various Ag delivery systems: plasmids, viral vectors, bacterial vectors, nanoparticles, self-assembled particles, natural and artificial cells, and extracellular vesicles. This review provides insight into the current vaccine landscape and highlights promising avenues of research for the development and improvement of Ag delivery systems.